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Abstract:
We analyze the effects of communication delays in teleoperation systems using dissipativity
theory along with explicit models of the operator and robot. We utilize a simple model of the
operator’s behavior that describes human pointing motions, as generated by an interface such as
a mouse pointer or tablet, and we use a robot model that is suitable for mobile robots or robotic
manipulators. Using dissipativity conditions for stability, we show that the communication
delays can be compensated for in the robot controller with a relatively simple extension to
a controller designed for the situation without delays. We also show that the communication
delays can lead to problems for human pointing in certain situations; specifically, if the operator
overshoots their target, it may lead to instability unless corrective action is taken by the user
interface. Simulation is shown to validate the results.
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1. INTRODUCTION

Teleoperated robots often have communication delays to
and from and their operators as the result of signal propa-
gation times and bandwidth constraints. These delays can
seriously degrade control performance and even lead to
instability, particularly when the delays are large relative
to the speed of the dynamics of the robot. While it may
not be possible to eliminate these communication delays,
we can reduce their effects by compensating for them in
the design of the robot controller and the user interface.

Our goal is to design the teleoperation system shown in
Fig. 1 to be stable despite the communication delays. In
this setup, the human operator interacts with the user
interface (UI) which transmits control information over the
communication link to the controller on-board the robot,
which in turn transmits back feedback information to the
operator through the user interface. The communication
link delays the messages by an unknown length of time in
either direction. We specifically consider the case where
the control objective is for the robot to track a trajectory
specified by the operator in real time; in other words, the
operator controls the robot’s pose.

We use dissipativity theory along with explicit models of
the operator and robot to analyze the effects of the com-
munication delays. We describe the operator’s behavior
with a simple dynamics model for human pointing motions
that is applicable to a variety of pointing interfaces, such
as a mouse cursor or a tablet. We adopt a robot dynamics
model that is suitable for mobile robots or robotic manipu-
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Fig. 1. Block diagram of teleoperation system with com-
munication delays.

lators. Using dissipativity conditions for stability, we show
that the communication delays can be compensated for
in the robot controller with a relatively simple extension
to a controller designed for the situation without delays.
We also show that the communication delays can lead to
problems for human pointing in certain situations; specif-
ically, if the operator overshoots their target, it may lead
to instability unless corrective action is taken by the UI.

There has been a great deal of work in analyzing the effects
of delays and designing controllers to compensate for them.
Our dissipativity-based approach is most closely related
with the work on the scattering transform and its associ-
ated passivity conditions for stability of delayed systems.
The scattering transform, originally presented in Ander-
son and Spong (1989) and subsequently reformulated in
Niemeyer and Slotine (1991), has been used extensively
to deal with unknown communication delays in haptic
bilateral teleoperators, see Chopra and Spong (2004), and
has also been extended to the cases of time-varying delays
in Niemeyer and Slotine (1998); Lozano et al. (2002);
Kottenstette and Antsaklis (2007) and discrete time delays
in Berestesky et al. (2004); Chopra et al. (2008). Our work
is also closely related to finite gain L2 approaches, as in
Chopra and Spong (2007), and reproduces some of the
results in that area.
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This work has three novel contributions. First, we incorpo-
rate a model for human pointing motion into the classical
delayed teleoperation setup. While we are not the first to
use assumptions about human behavior to analyze teleop-
eration systems, to the best of our knowledge, this work is
the first to utilize a dynamics model for human pointing
behaviors. Second, using dissipativity-based methods, we
are able to show under what conditions the teleoperation
system may become unstable when no delay compensation
is applied. These dissipativity methods reframe and extend
the existing work for passivity-based teleoperation. Third,
we design delay compensation for the robot controller and
show preliminary results for the UI design.

The remainder of the paper is organized as follows. In Sec-
tion 2 we present some background information relevant
to our work. In Section 3 we show that communication
delays are dissipative systems with respect to a particular
supply rate, and we use this supply rate to derive new sta-
bility conditions for systems with communication delays.
In Sections 4 and 5 we analyze and design the UI and robot
control, respectively, using the derived stability conditions,
and in Section 6 we present a summary of this analysis. In
7 we present the results of simulation of the teleoperation
system. In Section 8 we finish with conclusions of this
work.

2. BACKGROUND

Here we present some background information relevant to
our approach. We show a standard model for robotic vehi-
cles and detail the derivation of a commonly used trajec-
tory controller based on this model without consideration
of communication delays. We also give a short introduction
to dissipative systems, the basis for our approach to delay
compensation.

2.1 Robotic Vehicle Dynamics and Control

In order to design the robot controller, we must start
with a reasonable model for the system. We use a general
purpose rigid body dynamics model that can be used
for robotic manipulators Slotine (1988) and many types
of mobile robots Murray and Li (1994); Fossen (1994);
Fjellstad (1994)

M(q)q̈ + C(q, q̇)q̇ +D(q, q̇)q̇ +G(q) = τ (1)

where q, q̇, τ ∈ Rn are the generalized coordinates, velocity,
and forces of the vehicle, respectively. For simple vehicles,
q is the position and orientation of the vehicle, and for
manipulators, q is the joint angles.

We make a few assumptions about this model that are
often true in general From et al. (2010):

Ṁ(q)− 2C(q, q̇) is skew symmetric (2)

M(q) and D(q, q̇) are symmetric positive definite (3)

We also mention that there is some freedom in how C(q, q̇)
can be represented, and (2) only applies to particular
representations.

For this model, the controller shown below guarantees
tracking of a desired trajectory for robotic vehicles under
normal circumstances, but will not necessarily achieve this
when there are communication delays in the feedback path.

For simplicity, the version presented here assumes that the
system dynamics M , C, D, and G are known; however, the
adaptive version of this controller is nearly identical for our
purposes; see Fossen (1994) for a derivation of the adaptive
version of this controller. Connecting the definitions above
to the setup in Fig. 1, we define

y = w = x =

[
q
q̇

]
v̂ = v = xd =

[
qd
q̇d

]
u = τ

which corresponds to state feedback, reference input of the
the desired state of the vehicle without any delays, and
direct application of control forces to the vehicle.

We define some auxiliary variables that simplify the nota-
tion. The error

e(t) = [q̇(t)− q̇d(t)] + λ[q(t)− qd(t)]

where λ is some positive constant, referred to as the
bandwidth. Note that, e(t) → 0 implies that q(t) → qd(t)
and q̇(t)→ q̇d(t). With this, our tracking goal is simply to
make e asymptotically stable to the origin.

The virtual reference trajectory qr is defined by

q̇r(t) = q̇(t)− e(t)
and will appear in the derivation of the controller associ-
ated with feedforward terms.

With these definitions, we will now analyze the error
dynamics while at the same time trying to select u with
the intent of making e asymptotically stable. Choosing

V (e) =
1

2
e>Me

Taking the derivative of this with respect to time

V̇ (e) = e>Mė+
1

2
e>Ṁe

since by assumption M is symmetric. We can use the fact
that Ṁ(q)− 2C(q, q̇) is skew-symmetric to show

1

2
e>Ṁ(q)e =

1

2
e>
(
Ṁ(q)− 2C(q, q̇)

)
e+ e>C(q, q̇)e

= e>C(q, q̇)e

Replacing terms in the previous expression, we have

V̇ (e) = e>M(q)(q̈ − q̈r) + e>C(q, q̇)e

Substituting in the dynamics for M(q)q̈ and regrouping

V̇ (e) = e> (τ − C(q, q̇)q̇ −D(q, q̇)q̇ −G(q)−M(q)q̈r)

+ e>C(q, q̇)e

= e> (τ −M(q)q̈r − C(q, q̇)q̇r −D(q, q̇)q̇r −G(q))

− e>D(q, q̇)e

Since we have assumed thatM , C,D, andG are known, we
can directly cancel these terms in the previous expression
by choosing

τ = M(q)q̈r + C(q, q̇)q̇r +D(q, q̇)q̇r +G(q) + τc (4)

where τc is a control term to be specified later. This choice
leads to

V̇ (e) = −e>D(q, q̇)e+ e>τc (5)

Since D is positive definite by assumption, we know V̇ is
negative definite when τc = 0, thus achieving asymptotic
trajectory tracking. We can also choose τc to meet conver-
gence rate requirements; one simple choice is τc = −Ke
with K � 0.
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This concludes the derivation of the trajectory controller
without any communication delays. Our goal now is to
design τc such that this controller still achieves trajectory
tracking despite the addition of communication delays.
In order to analyze the effect of delays, we will utilize
dissipativity-based tools.

2.2 Dissipative Systems

The theory of dissipative systems originated in Willems
(1972). Dissipativity can be seen as one of the possible
generalizations of Lyapunov analysis to interconnected
systems, and is a direct generalization of passivity. As with
Lyapunov analysis, dissipativity-based analysis utilizes
a notion of energy in a system as a function of its
state, and as with passivity-based analysis, dissipativity-
based analysis models the transfer of energy between
interconnected systems, but differs in that it considers a
more general definition of energy transfer.

The systems under consideration in this section are all of
the form

ẋ = f(x, u)

y = h(x, u)

x ∈ X
y ∈ Y u ∈ U (6)

where x is the state, u is the input, and y is the output of
the system.

Definition A nonlinear system Σ of the form (6) is said
to be dissipative with respect to some supply rate s(t) =
s (u(t), y(t)) if there exists a positive semi-definite storage
function V : X → R≥0 such that

V (x(t1))− V (x(t0)) ≤
∫ t1

t0

s(t)dt (7)

along all feasible trajectories of x, for all u ∈ U , and for
all t1 ≥ t0. Σ is said to be lossless if the inequality in (7)
is actually an equality and is said to be strictly dissipative
if (7) is a strict inequality for all t2 > t1, except possibly
when V ≡ 0. If V is differentiable with respect to time,
then (7) becomes

V̇ (x(t)) ≤ s(t) (8)

Another useful equivalent definition of dissipativity is that
for all x0, there exists a lower bound a = a(x0) ∈ R such
that: ∫ t1

t0

s(t)dt ≥ a ∀u ∀t1 ≥ t0 (9)

In words, this means that an infinite amount of energy
cannot be drawn out of a dissipative system.

Some of the most important properties of dissipative
systems deal with multiple systems

Theorem 1. Given systems Σi for i = 1, ..., k, each dissi-
pative with respect to corresponding supply rate si(t), the
combined system Σ = {Σi : i = 1, ..., k} is dissipative with

respect to the sum of the supply rates s(t) =
∑k

i=1 si(t).

The proof of this theorem is straightforward, and is shown
in Willems (1972). Also note that this theorem applies
regardless of how the systems are interconnected. The
real usefulness of this theorem comes when used when
analyzing the stability of dissipative systems.

Theorem 2. Given a system Σ that is dissipative with
respect to supply rate s(t) with some associated storage
function V , then Σ is stable (in the Lyapunov sense) in
some neighborhood of the origin if V is locally positive
definite and s is locally negative semi-definite.

This is just a rephrasing of Lyapunov’s direct method. A
similar result for asymptotic stability can be shown if Σ
is strictly dissipative. We can combine the previous two
theorems

Corollary 3. Given systems Σi for i ∈ 1, ..., k, each dis-
sipative with respect to corresponding supply rate si(t)
with some associated storage function Vi, then combined
system Σ = {Σi : i = 1, ..., k} is stable if each Vi is locally
positive definite and the sum of the supply rates is locally
negative semi-definite.

We will use this corollary in following sections to derive
sufficient conditions for stability of systems with commu-
nication delays.

3. DELAYS AS DISSIPATIVE SYSTEMS

We start by deriving a supply rate to which communica-
tion delays are dissipative and then show how this supply
rate provides sufficient conditions for stability of systems
with communication delays via Corollary 3.

3.1 Communication Delay Supply Rates

In many applications, communication delays are unknown
and may vary in time in complex ways. Using the notation
of Delay 1 in Fig. 1, we define a time varying delay system

v̂(t) = v(t− T (t)) (10)

While we consider the length of the delay T (t) to be
unknown, we assume that

T (t) ≥ 0 (11)

Ṫ (t) ≤ 1 (12)

The condition in (11) assures that the system is causal and
the condition in (12) maintains that messages will arrive
in the order in which they were transmitted.

Theorem 4. Time-varying delay systems as defined by (10)
are dissipative with respect to

s(v, v̂) = α(v)− α(v̂) c (13)

where α : V → R≥0 is some positive semi-definite function

and c ≤ (1− Ṫ (t)) ∀t.

Proof. The state of this system is all the values of the
input v over the time interval starting at the current time
and going back T (t) seconds

x(t) = {v(τ) | τ ∈ [t− T (t), t]} (14)

Now, we choose a positive semi-definite storage function
V for this system and then try to find a supply rate s that
meets the inequality in (8). A possible choice is

V (x(t)) =

∫ t

t−T (t)

α(v(τ))dτ (15)

Where α : V → R≥0 is some positive semi-definite
function. Using the Leibniz rule to differentiate
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V̇ (x(t)) = α(v(t))− α(v(t− T (t)))
(

1− Ṫ (t)
)

= α(v(t))− α(v̂(t))
(

1− Ṫ (t)
)

≤ α(v(t))− α(v̂(t)) c

Note that this definition requires that Ṫ have an upper
bound, but recall that it is already assumed in (12) to be

bounded above by 1. If Ṫ ≡ 0, then we can choose c = 1,
in which case the above supply rate is lossless. If desired,
we can also let c depend on time t.

Considering the system in Fig. 1 again, there are two
delays, one in each direction of communication. It will
be convenient for the coming analysis to combine the two
delays into one system (dotted box in Fig. 1).

Corollary 5. The time-varying bi-directional delay system
such as shown in Fig. 1 is dissipative with respect to
sa(v, ŵ) + sb(w, v̂) where

sa(v, ŵ) = α1(v)− α2(ŵ) c2 (16)

sb(w, v̂) = α2(w)− α1(v̂) c1 (17)

given c1 ≤ (1 − Ṫ1) and c2 ≤ (1 − Ṫ2), α1 : V → R≥0
and α2 : W → R≥0 are some positive semi-definite

functions. The subscripts 1 and 2 on α and Ṫ represent
the corresponding values for the Delay 1 and Delay 2 in
Fig. 1.

Proof. From Theorem 4, we know that the delay systems
are dissipative with respect to s1(v, v̂) and s2(w, ŵ), re-
spectively, where

s1(v, v̂) = α1(v)− α1(v̂) c1
s2(w, ŵ) = α2(w)− α2(ŵ) c1

From Theorem 1, the combined system is dissipative with
respect to the sum of the supply rates

s1(v, v̂) + s2(w, ŵ) = sa(v, ŵ) + sb(w, v̂)

We will see in the following sections that the structure
of these supply rates makes it possible for us to verify
if the overall system is stable by independently meeting
dissipativity conditions for each system.

3.2 Stability Conditions

We now have everything needed to state sufficient condi-
tions for stability of systems with communication delays

Corollary 6. Given a system setup as in Fig. 1, the com-
bined system made up of the human operator, user inter-
face, communication delay system, robot controller, and
robot is stable if

(a) the operator / user interface system is dissipative with
respect to −sa(v, ŵ) as defined in (16) and

(b) the robot control / robot system is dissipative with
respect to −sb(w, v̂) as defined in (17).

assuming that α1 and α2 are both defined to be locally
positive definite.

Proof. We know from Corollary 5 that combined delay
systems are dissipative with respect to sa(v, ŵ) + sb(w, v̂),
so given the conditions above, then the sum of all of the
supply rates of the systems is equal to zero. Thus, from
Corollary 3, the overall system is stable.

The requirement that α1 and α2 be locally positive def-
inite ensures that every component of v and w remain
bounded. The conditions above restrict the signals v and
w to sublevel sets of α1 and α2, but if α1 and α2 are
only semi-definite, the sublevel sets may not be bounded.
However, this may be satisfactory if we can bound the
other components of the state using invariance principles.
This is the strategy we adopt in later sections.

Notice that if the delays increase so quickly that new
messages are never received (Ṫi = 1 and ci ≤ 0), then the
stability conditions are the same as requiring that each
subsystem be independently stable for any input. When
new messages are received (Ṫi < 1 and ci > 0), the
stability conditions are weaker than requiring that each
subsystem be independently stable.

Also notice that these conditions were constructed so
that each system needs to be dissipative with respect
to a supply rate which is a function of locally available
variables. This is very convenient as it allows us to design
and analyze each system independently.

3.3 Choice of α1 and α2

We are free to choose any positive semi-definite α1 and α2

in the supply rates in (16) and (17), but some choices may
make it easier than others to ensure dissipativity. In the
following sections we use

α1(xd) = α1

([
qd
q̇d

])
= ||q̇d + λqd||2K1

(18)

α2(x) = α2

([
q
q̇

])
= ||q̇ + λq||2K2

(19)

where K1,K2 are positive semi-definite matrices and the

norm ||q||K =
√
q>Kq. This choice makes the design of

the robot control much simpler, as it matches well with the
definition of the tracking error in Section 2.1. This choice
is also fine for the operator and UI, as we will show that
for linear systems it is equivalent to a simpler supply rate.

4. USER INTERFACE ANALYSIS AND DESIGN

4.1 Human Pointing Dynamics

The user interface in our application involves a human
operator controlling the position of a robot. If this position
is specified by pointing, we can expect the dynamics to be
consistent regardless of the specific interface being used.
Humans have shown to generate similar motions when
reaching and pointing with their arms, mouse pointers,
laser pointers, and other devices. We use the Vector Inte-
gration to Endpoint (VITE) model, as first shown in Bul-
lock and Grossberg (1988), to model pointing behaviors.
In its simplest form, this model can be written as:

ν̇ = γ(−ν + ζ − p)
l̇ = G[ν]+

(20)

where l is the true position of the pointer, p is the feedback
of the (perceived) position of the pointer, ζ is the target
pointer position, ν is a state called the difference vector, G
is a gain called the go signal, and γ is a system parameter.
This model only represents single dimensional pointing
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motions, but it may be generalizable to two or three
dimensions.

The VITE model describes a single motion made by a
human trying to drive the true position of the pointer l
to the target pointer position ζ. If there is overshoot, and
the true pointer position l passes over the target pointer
position ζ, the human stops quickly, but no corrective
action is taken to move back closer to the target. The
work by Beamish et al. (2006) showed that because of
the feedback delays between the true position l and the
perceived position p of the pointer, there is an inherent
trade-off between the overshoot of the target and the time
taken to reach the target that matches with Fitts’s law, one
of the most famous invariants for reaching and pointing
motions. It was also shown that the overshoot of the target
occurs whether ν(t) < 0 for some t. In the next section,
we will show that the the VITE model can be seen as a
switched linear system, where the switching occurs when
ν crosses zero, and it is dissipative only when ν ≥ 0 and
there is no overshoot.

4.2 Dissipativity of Human Pointing

Our goal now is to determine when the user interface
combined with the human operator is dissipative with
respect to −sa(v, ŵ). We will see that by representing the
VITE model as a switched linear system, we can show
that it is dissipative as long as the operator does not
overshoot their target. First, we consider the dissipativity
of an arbitrary linear system.

Theorem 7. A linear system

ẋ = Ax+Bu

y = Cx

is dissipative with respect to s(u, y) = ||u||2K1
− ||y||2K2

for positive semi-definite matrices K1,K2 if there exists a
positive semi-definite solution P to the Riccati equation
PA+A>P + PBK−11 B>P + C>K2C = 0.

Proof. Given there exists a P � 0 such that PA+A>P +
PBK−11 B>P + C>K2C = 0, try the storage function

V (x) = x>Px

V̇ (x) = x>(PA+A>P )x+ 2u>B>Px>

= x>(PA+A>P )x+ u>K1u+ x>PBK−11 B>Px

− ||K−11 B>Px− u||2K1

≤ x>(PA+A>P + PBK−11 B>P )x+ u>K1u

= −x>C>K2Cx+ u>K1u

= −||y||2K2
+ ||u||2K1

This theorem will let us determine when the VITE model
is dissipative. Referring back to Section 3.3, the supply rate
in this theorem is not quite of the form that we want as
in (18) and (19); we are using s = ||u||2K1

− ||y||2K2
instead

of s = ||u̇+ λu||2K1
− ||ẏ + λy||2K2

. We will see in the next
section in the design of the robot controller that the latter
supply rate is much easier to work with. Before then, we
can show that linear systems, the two supply rates can be
tested for with the same conditions, the solution to the
Riccati Equation.

Theorem 8. A linear system

ẋ = Ax+Bu

y = Cx

is dissipative with respect to s(u, y) = ||u̇+λu||2K1,i
−||ẏ+

λy||2K2,i
for positive semi-definite matrices K1,K2 if there

exists a positive semi-definite solution P to the Riccati
equation PA+A>P + PBK−11 B>P + C>K2C = 0.

Proof. Construct an augmented system using the defini-
tions:

x̃ = ẋ+ λx ỹ = ẏ + λy ũ = u̇+ λu

With this, the dynamics become

˙̃x = ẍ+ λẋ

= Aẋ+Bu̇+Ax+Bu

= Ax̃+Bũ

ỹ = Cẋ+ Cx

= Cx̃

Thus, by construction, the augmented system is consistent
with the original system’s dynamics. Using Theorem 7, if
there exists a P � 0 such that PA+A>P+PBK−11 B>P+
C>K2C = 0, then the system is dissipative with respect
to s(ũ, ỹ) = ||ũ||2K1

− ||ỹ||2K2
= ||u̇+ λu||2K1

− ||ẏ + λy||2K2

We can now use this theorem to analyze the dissipativity
of the VITE model.

Theorem 9. The VITE model in (20) is dissipative with
respect to

s

([
p
ṗ

]
,

[
l

l̇

])
= ||ṗ+ λp||2K1

− ||l̇ + λl||2K2
(21)

when ν(t) ≥ 0 for all t.

Proof. The VITE model can be seen as a switched linear
system, where the switching occurs when ν = 0. For
ν(t) ≥ 0, we can define

x =

[
ν
l

]
u =

[
p
ζ

]
y = l

A =

[
−γ 0
G 0

]
B =

[
−γ γ
0 0

]
C = [0 1]

The controllability and observability matrices for this
system are

C = [B AB]

=

[
−γ γ γ2 −γ2
0 0 −γG γG

]
O =

[
C
CA

]
=

[
0 1
G 0

]
both of which are full rank, so the system is controllable
and observable and thus has a solution to the Riccati
equation. So by Theorem 8, it is dissipative with respect
to the supply rate in (21).

Theorem 10. The VITE model in (20) is not dissipative
with respect to the supply rate in (21) when ν(t) < 0 for
all t.

Proof. When ν(t) < 0, then y is a constant and ẏ = 0. If
we let c = ||ẏ + λy||2K2

= ||λy||2K2
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∫ t1

t0

s(t)dt =

∫ t1

t0

(
||u̇+ λu||2K1

− ||ẏ + λy||2K2

)
dt

=

∫ t1

t0

(
||u̇+ λu||2K1

− c
)
dt

Choosing u ≡ 0 ∫ t1

t0

s(t)dt = −c(t1 − t0)

which goes to −∞ as t1 → ∞. From the alternative
definition of dissipativity in (9), this means that the system
is not dissipative with respect to this supply rate.

We can see that the operator’s behavior is dissipative when
there is no overshoot. There are two possibilities to ensure
dissipativity, either prevent overshoot or add dissipation
when there is overshoot.

5. ROBOT CONTROLLER ANALYSIS AND DESIGN

The last step in our design is ensure that the robot con-
trol system meets the stability conditions and maintains
asymptotic trajectory tracking. We will find that while
the dissipativity conditions are enough to ensure that the
tracking error is stable, we will require something addi-
tional to ensure asymptotically stable error.

Theorem 11. Given

τc =

{
−Kd

[
(q̇ + ̂̇qd) + λ(q + q̂d)

]
if sb(x, x̂d) ≥ e>Kee

−Kee otherwise

(22)

with Kd, (c1K1 − Kd), (Kd − K2) positive semi-definite

and with Ke positive definite, c1 ≤ 1− Ṫ1, and

α1(x̂d) = ||̂̇qd + λq̂d||2K1

α2(x) = ||q̇ + λq||2K2

then the vehicle/on-board control system is dissipative
with respect to −sb(x, x̂d) = −α2(x) + α1(x̂d) c1 and
achieves asymptotic trajectory tracking.

Proof.

This controller switches between ensuring dissipativity and
ensuring error convergence. We can show that

V̇ (e) ≤ min{−sb(x, x̂d),−e>Kee}
since we know from (5) that

V̇ (e) = −e>D(q, q̇)e+ e>τc ≤ e>τc
Thus, we want

e>τc ≤ min{−sb(x, x̂d),−e>Kee}

We can see that τc = −Kd

[
(q̇ + ̂̇qd) + λ(q + q̂d)

]
implies

e>τc = −
[
(q̇ − ̂̇qd) + λ(q − q̂d)

]>
Kd

[
(q̇ + ̂̇qd) + λ(q + q̂d)

]
= −

[
(q̇ + λq)− (̂̇qd + λq̂d)

]>
Kd

[
(q̇ + λq) + (̂̇qd + λq̂d)

]
= −

[
||q̇ + λq||2Kd

− ||̂̇qd + λq̂d||2Kd

]

≤ −||q̇ + λq||2K2
+ ||̂̇qd + λq̂d||2K1

c1

= −sb(x, x̂d)

And clearly, τc = −Kee implies e>τc ≤ −e>Kee, so by
switching when sb(x, x̂d) crosses e>Kee, we meet both
conditions and

V̇ (e) ≤ min{−sb(x, x̂d),−e>Kee}

6. DESIGN SUMMARY

We have derived all of the components of our controller
design. Given a system as in Fig. 1 with the robot system
modeled by (1) and delays each modeled by (10), then
if we design the robot control system according to (4)
and (22) with a human operator that does not overshoot
their target, then the overall system is stable and achieves
asymptotic trajectory tracking y(t)→ v̂(t) as t→∞.

Stability is ensured because a system designed this way
meets the conditions of Corollary 6. One technical point
is that α1 and α2 as we defined them are only positive
definite with respect to (q̇d + λqd) and (q̇ + λq), respec-
tively, so Corollary 6 only implies that these terms are
stable; however, we can use invariance principles to also
show that the terms qd, q̇d, q, and q̇ are each individually
stable. While the overall system should not be asymptotic
stable, as this would mean xd → 0, we have already shown
that e is asymptotically stable to the origin for this choice
of switching control.

7. SIMULATION

Using the design proposed in this paper, we simulated
a robotic vehicle being controlled remotely over a de-
layed communication link by a simulated human oper-
ator. This simulation shows that our design behaves as
we expect: the state of the system is stable and asymp-
totic trajectory tracking is achieved despite the time
varying delays. For the vehicle, we used a model of a
small unmanned underwater vehicle (UUV), for which
q = [Longitude,Latitude,Depth,Roll,Pitch,Yaw]>. For
the human operator, we used the VITE model with a con-
stant target pointer position ζ = 1 and with parameters
γ = 1 and G = 0.2, which ensured that there was no
overshoot. The user interface was configured to control
just one component of the state of the robot, the latitude,
while the other components were set at a target of zero.
The communication delays were chosen as T1(t) = T2(t) =
0.5+0.5∗sin(0.1 t) and the other parameters for the design
were set as K1 = 10 I, K2 = Kd = 8 I, and Ke = 10 I,
which meets all of the conditions specified in the design.

Fig. 2 shows two different views of the trajectory of the
vehicle over time. Fig. 3 shows the magnitude of the error
||e|| over time. Fig. 4 shows each of the elements of the
x over time compared to the desired state value xd. With
these, we can see that the error is asymptotically stable,
and for these choices of gains, mostly converges before the
human reaches their target.

8. CONCLUSION

We have demonstrated an application of dissipativity the-
ory to the analysis and design of systems with communi-
cation delays. We used an explicit model for the human
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Fig. 2. The trajectory of the vehicle.
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Fig. 3. Magnitude of the trajectory error ||e||2 over time.
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Fig. 4. Each of the components of the state over time. The
solid blue lines show true values of state x and dotted
red lines show the desired state values x̂d

operator’s behavior and robot’s dynamics. Our dissipativ-
ity methods allowed us to analyze and design these systems
separately. Natural extensions to this work include an UI
design that is always dissipative, multi-dimensional human
model, non-holonomic robot model, adaptive versions of
the controller designs, and different types of communica-
tion links, including packet-based communication.
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Fig. A.1. Scattering transform applied between a passive
system and a communication delay system.

Appendix A. CONNECTION TO PASSIVITY AND
THE SCATTERING TRANSFORM

As mentioned in Section 1, the scattering transform is a
tool frequently used to compensate for unknown commu-
nication delays. The scattering transform for time-varying
delays is defined by

v =
1√
2b

(y + bu)
√
c2ŵ =

1√
2b

(y − bu) (A.1)

where b is some positive constant, c2 is a non-negative
gain, y,u ∈ Rn, and the other variables are as labeled in
Fig. A.1.

In much of literature on the scattering transform, humans
using a haptic feedback controller are assumed to behave
passively, i.e. dissipative with respect to s(u, y) = u>y.
This passivity assumption is convenient because when the
scattering transform is connected in negative feedback
to a passive system, it meets the stability conditions in
Corollary 6 (a) when α1(·) = α2(·) = 1

2 || · ||
2.

Theorem 12. The scattering transform is lossless with
respect to

s(t) = u>y − [α1(v)− α2(ŵ)c2]

where α1(·) = α2(·) = 1
2 || · ||

2 and where c2 ≤ (1− Ṫ2).

Proof. Solving for u and y

u =

√
1

2b
v −

√
c2
2b

ŵ

y =

√
b

2
v +

√
c2b

2
ŵ

Combining these terms

u>y =
1

2
||v||2 − 1

2
||ŵ||2c2

= α1(v)− α2(ŵ)c2

We can choose V = 0, in which case

V̇ = 0 = u>y − [α1(v)− α2(ŵ)c2]

From this we can see that scattering transform is one way
of transforming a passive system into a system that is
dissipative with respect to a supply rate compatible with
delays.
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