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Abstract— This paper presents a novel dynamical system
model for the resting membrane potential of cells. The novelty
of this work is that the model allows parameters related to
permeabilities of ion channels to be controlled so the resting
membrane potential reaches a desired value. We are then able
to explain the decreased polarity across the cell membrane
when nanoparticles are introduced in the vicinity of a cell. The
effect of varying these parameters on the resting membrane
potential of a cell is investigated. The proposed model allows
simulation of the behaviors of the resting membrane potential
that matches experimental data.

I. INTRODUCTION

The transmembrane potential is the difference in electric

potential between the interior and the exterior of biological

cells. The transmembrane electrical potential of cells is of

great importance in human health and disease [1]. This

−100mV to −10mV gradient of electrical energy across the

plasma membrane influences the transport of nutrients, ions,

and water in and out of cells [1]. Different cell types have

different characteristic membrane potentials [2]. Important

for human disease, cancer cells are depolarized relative to

healthy cells from the same tissue with resting membrane

potentials closer to 0mV . If the transmembrane potential can

be controlled, it may be possible to influence the behavior

of a cell so that certain diseases may be cured.

Multiple models have been generated to describe the

transmembrane potential. Best known is the Hodgkin-Huxley

model for the membrane current in active nerve cells [3].

Transport through the cell membrane has also been studied

in [4]. Homeostasis is a property of a system in which certain

variables are regulated to maintain a relatively stable internal

environment. The work in [5] focuses on the dynamics of

homeostasis and examines how long it takes to reach the

equilibrium state if homeostasis is perturbed by a small

amount. Steady-state analysis for modeling homeostasis for

epithelial cells is presented in [6]. A system of differential

equations linking transmembrane potential, ionic concentra-

tions and cell volume of eukaryotic cells is examined in [7].

Although the model in [7] is useful, it is complex and it does
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not explicitly deal with controlling the resting membrane

potential. One of our motivations is to derive a simpler model

which allows control of the transmembrane potential.

Lacking from previous models of transmembrane potential

are parameters that allow control of the membrane potential.

This paper presents a dynamic model that explicitly reveals

the connections between the values of the tunable parameters

and the values of the resting membrane potential. In addition,

we show that our model is a nonlinear system that is stable

over a large range of values for the parameters. Such a

model can be used to simulate how the transmembrane

potential reacts to the introduction of an ion species or how

nanoparticles might be used to block specific ion channels to

tune membrane potential [8]. The ability to target and modify

cells by manipulating membrane potential has important

implications for cancer detection and treatment. Biological

processes like transmembrane potential, or genetic memory

circuits, may have nonlinear dynamics [9]. Studying the

stability properties of a nonlinear system may help under-

stand the corresponding biological process [10], this is a

motivation for us. Literature exists on simulating nonlinear

biological processes [11]. Using nonlinear equivalent circuit

models may make the dynamics of biological processes more

accessible for control-oriented analysis. Thus inspired, we

develop a simple nonlinear dynamic model of the transmem-

brane potential of a cell, the simplicity may aid a nonlinear

equivalent circuit representation of our model in the future.

The main contribution of this work is a simple dynamic

model that allows the control of cellular resting membrane

potential by regulating the permeability of transmembrane

channels. Unlike some existing approaches in the literature,

our model also displays stability in addition to giving pre-

dictable values of the resting membrane potential. We argue

that stability is a merit for any such model. We also show

that one of the existing models in literature [12] produces a

dynamic model with unstable equilibrium points, and this

does not match physical observations. Our experimental

efforts also show that the model successfully predicts the

depolarization of cells when nanoparticles are introduced

into the vicinity of cells. The dynamic model presented

here can also be used to study the transient behavior of the

transmembrane potential.

This paper is organized as follows. We motivate this work

by providing experimentally observed results in section II.

Background on cellular models is provided in section III. Our

proposed model for controlling the transmembrane potential

is presented in section IV. An analysis of the stability of the

equilibrium points of this model is presented in section V.
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Results of simulations and comparison of simulation results

with experiments are presented in section VI. Conclusions

and ideas for future work are presented in section VII.

II. MOTIVATION

Figures 1 and 2 show the results of binding nanoparti-

cles to the membrane of CHO (Chinese Hamster Ovary)

cells. The nuclei of the cells are stained with DAPI (4,

6-diamidino-2-phenylindole) and fluoresce blue, while the

cytosol (intracellular fluid) are stained with DiBAC4(3) (bis-

(1,3-dibutylbarbituric acid) trimethamine oxonol) and fluo-

resce green. The properties of DiBAC4(3) are such that,

with increased depolarization, the dye diffuses into the

cell to a greater extent than it does at the cell’s resting

state. Therefore, the cells exhibit an increase in DiBAC4(3)

fluorescence in response to an increased depolarization [13].

Figure 1 shows the control condition, before nanoparticles

are introduced to the CHO cells. The cytosol of the cells do

show a slight green fluorescence from DiBAC4(3), due to

the fact that some dye will enter into the cells even at their

resting state, where the potential has some initial negative

value in millivolts.

Figure 2 shows the same cells, but with the introduction

Fig. 1. Fluorescence microscopy image of CHO cells. Nuclei are stained
with DAPI (blue) and the cytosol is stained with DiBAC4(3) (green).

Fig. 2. Fluorescence microscopy image of 60nm amine-modified
polystyrene nanoparticles (red), bound to the membrane of CHO cells.

of 60nm, amine-modified polystyrene nanoparticles. These

red-fluorescent nanoparticles are introduced to the cells at

conditions such that the particles bind to the outside of

the plasma membrane. From Fig. 2 it is observed that the

addition of nanoparticles has led to an increase in DiBAC4(3)

fluorescence. This increase in DiBAC4(3) fluorescence af-

ter the introduction of nanoparticles indicates an increased

depolarization of the cell. To define further, an increase

in depolarization means that the transmembrane potential

increases and approaches zero.

Motivated by the above observations, the aim of this

paper is a simple dynamical model which allows certain

parameters to be controlled, to allow us to mimic the effect

of introducing nanoparticles (or any ion species) to make

the transmembrane potential approach zero (or some other

desired value). In the following section we provide some

background information about modeling biological cells and

then we propose our own model.

III. BACKGROUND

The work in [12] provides an accessible treatment to the

problem of modeling the resting transmembrane potential of

a cell. The following information from [12] forms the basis

for the work in this paper.

A simple model showing a cell under standard conditions

is shown in Fig. 3. The cell membrane (boundary) contains

channels to mediate the passive movement of three types

of ions i.e. Cl (chlorine), Na (sodium), and K (potassium).

These channels are gaps in the cell membrane that allow

the passage of molecules between cells. The fluid contained

inside a cell is known as the cytosol. The permeability of

the resting cell is PK = 1.0, PNa = 0.02, and PCl = 2.0
(in arbitrary units). As shown in Fig. 3, the resting potential

of the cell is Vmr = −80mV , and the resting volume is

1.0 (arbitrary units). All ion concentrations are specified in

mM (millimoles). The internal concentration of [Cl–] ions

is only 7mM . This makes room for internally accumulated

substances ([Subs–]) at a concentration of 143mM . Note that

the sum of the concentrations of ions and substances inside

the cell in Fig. 3 equals the sum of the ion concentrations

outside it, i.e. the cell shown is in homeostasis with internal

conditions balanced relative to the outside.

The currents corresponding to the movement of a particu-

lar ion species through the channels shown in Fig. 3 are given

by the following equations [12, Equation (3b)]. Consider the

following.

ψ(t) =
F

RT
Vm(t) (1)

IK(ψ(t)) = PKFzK

(

[K
+
]i − [K

+
]oe

ψ(t)
)

(2)

INa(ψ(t)) = PNaFzNa

(

[Na
+
]i − [Na

+
]oe

ψ(t)
)

(3)

ICl(ψ(t)) = PClFzCl

(

[Cl
−

]o − [Cl
−

]ie
ψ(t)

)

. (4)

Here PX(cm/s) is the product of the number of pores per

unit length of the cell membrane (cm2) times the permeabil-

ity ρX (cm3pore−1s−1) of a single pore. The subscript X
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can be replaced with K,Na or Cl to reflect permeabilities

to specific ions. F (Cmol−1) is Faraday’s constant. The

dimensionless quantities zK = zNa = zCl = 1, represent

the number of valence electrons (unity for all ions considered

here). All the internal, and external ion concentrations ([K+]i,

[Na+]i, [Cl+]i, [K+]o, [Na+]o, [Cl+]o) belong to the interval

[0,∞). The symbols R, T represent the gas constant and the

absolute temperature in degrees Kelvin respectively, and the

dimensionless quantity ψ(t) ∈ R is the ratio of the potential

Vm(t)F to the random thermal energy RT .

In addition to containing passive channels, the cell mem-

brane also contains active units that transport ions/molecules

inside/outside a cell. Figure 3 shows an ion pump. This pump

exports three Na+ ions and imports two K+ ions in every

cycle of its operation. Such active pumps may be driven by an

energy source like ATP (adenosine triphosphate) molecules.

The following equations govern the flux of Na+ and K+ ions

through the ATP driven ion pump (shown by the empty circle

in Fig. 3).

ΓNa+(t) =
2.17[ATP]

(

1 +
[Na+]

c

[Na+]
i

)3 (5)

ΓK+(t) =
−1

β
ΓNa+(t), (6)

where ΓNa+ ,ΓK+ ∈ R represent the fluxes of Na+ and

K+ ions respectively through the ion pump. The constant

β ∈ [0,∞) represents the pump ratio (known). The quantity

[Na
+
]c ∈ [0,∞) represents the concentration for half-

maximal occupation of a Na+ binding site on the pump. For

details regarding active ion pumps, readers are encouraged

to refer to [14]. Note that [ATP] ∈ [0,∞) is dependent on

time, hence the L.H.S. in (5) and (6) is time-varying. The

pump current [12] Ipump(t) ∈ R can now be obtained as

Ipump(t) =
(

ΓNa+(t) + ΓK+(t)
)

F. (7)

The following relationship modeling the effect of the pump

current, and the ion currents on the membrane voltage Vm
can now be written as

INa(ψ(t)) + IK(ψ(t)) + ICl(ψ(t)) + Ipump(t) = CmV̇m(t).
(8)

In (8) Cm ∈ (0,∞) is the transmembrane capacitance. There

are charged ions lining the inside and the outside of the cell

membrane as seen in Fig. 3. The interior and the exterior of

a biological cell can therefore be viewed as two electrically

conducting regions, separated by a thin layer of insulating

material (the cell membrane). For this reason, the presence of

the cell membrane is modeled as the membrane capacitance

Cm in (8). Equation (8) provides a basic equation that needs

to be satisfied by the various currents through the membrane

and the transmembrane potential. Solutions for Vm may not

necessarily be trivial.

IV. THE PROPOSED MODEL

We desire to be able to alter the value of Vm by changing

the flux through each channel using nanoparticles.

[Cl–]o 150 Cl channel

[Cl–]i 7

K channel

[K+]i 140 [K+]o 5

Na channel

[Na+]o 145

[Na+]i 10

3 Na+

2 K+

Ion pump
Vol 1.0

[Subs–] 143

Vmr = −80 mV

Fig. 3. A model showing the normal condition of a cell [12].

Now consider the parameters α1, α2, α3 ∈ [0,∞), and

the parameter k ∈ (0,∞) defined as α1 = PKFzK, α2 =
PNaFzNa, α3 = PClFzCl, and k = F

RT
. Note that Faraday’s

constant F , the gas constant R are positive. The normal

operating temperature of a cell is expected to be bounded

and significantly above absolute zero, hence T ∈ (0,∞).
Therefore we have that the constant k > 0. Equations (2)-

(4) can now be re-written as follows,

IK(Vm(t)) = α1[K
+
]i − α1[K

+
]oe

kVm(t) (9)

INa(Vm(t)) = α2[Na
+
]i − α2[Na

+
]oe

kVm(t) (10)

ICl(Vm(t)) = α3[Cl
−

]o − α3[Cl
−

]ie
kVm(t). (11)

Using equations (9)-(11), equation (8) can be re-written as

follows.

V̇m(t) =
1

Cm

(

α1[K
+
]i + α2[Na

+
]i + α3[Cl

−

]o
)

−
ekVm(t)

Cm
(α1[K

+
]o + α2[Na

+
]o + α3[Cl

−

]i)

+
1

Cm
Ipump(t) (12)

[Cl–]o 150

Cl channel

[Cl–]i 7

K channel

Nanoparticle

[K+]i 140 [K+]o 5

Na channel

[Na+]o 145

[Na+]i 10

3 Na+

2 K+

Ion pump
Vol 1.0

[Subs–] 143

Vmr = −80 mV

Fig. 4. A model showing channels of a cell blocked using nanoparticles.
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The concentrations of ions outside a cell i.e. [K+]o, [Cl+]o,

and [Na+]o, can be regarded as a constant or slowly varying

compared to the dynamic change of the transmembrane

potential [14]. This is because the environment external to

a cell can be considered a chemical reservoir with constant

concentrations. Also, to maintain normal operating condi-

tions within a cell, every particular type of cell maintains

the concentrations of ions inside a cell i.e. [K+]i, [Cl+]i, and

[Na+]i, at constant values [14]. The channel currents arise

due to the movement of ions to maintain such a required

steady potential difference. The ion pump current is also

maintained at a relatively steady value [14], because any

transient disturbance in the pump current magnitude will

most likely upset the chemical concentrations within a cell,

i.e. disrupt the required operating conditions. Based on the

above discussion, the following simplifications are made,

a =
1

Cm

(

α1[K
+
]i + α2[Na

+
]i + α3[Cl

−

]o
)

(13)

b =
1

Cm

(

α1[K
+
]o + α2[Na

+
]o + α3[Cl

−

]i
)

(14)

c =
1

Cm
(15)

Ipump(t) = d, (16)

where the parameters a, b ≥ 0, and c, d > 0. Note that

the pump current and the ion concentrations have constant

values for a cell in normal operating conditions. In (13)-

(15) the quantity Cm, which represents the transmembrane

capacitance of a cell, is already known. The constants α1, α2

and α3 can be chosen to have particular values. In general

the values of the constants α1, α2 and α3 can be altered by

the introduction of some ion species in/around a cell. In this

work, it is assumed that the introduction of nanoparticles

is used to make the constants α1, α2 and α3 have desired

values. From (13) and (14) it is seen that a, b depend on the

values of α1, α2 and α3. Therefore changing α1, α2 and α3

by the introduction of nanoparticles can allow us to change

the parameters a or b.
Using (13)-(16), the model in (12) can be re-written as,

V̇m(t) = a−bekVm(t)+cd, where k, c, d > 0, and a, b ≥ 0.
(17)

Now let the state variable z(t) = ekVm(t), taking the time

derivative of z and using (17) we get ż(t) = kekVm(t)V̇m(t),
which gives the following system equation.

ż = kz(a− bz + cd) (18)

V. STABILITY ANALYSIS

From (18) it can be seen that ż = 0 when z assumes the

following two values,

z01 = 0, and (19)

z02 =
a+ cd

b
, (20)

representing the two equilibrium points for the system in

(18). From (18) and (20) we get,

ż = −kbz(z − z02). (21)

The equilibrium point z01 = 0 for (18) corresponds to

Vmr = −∞. This equilibrium point is not practically useful

because a resting membrane potential of Vmr = −∞ is not

normally observed [2]. Therefore we use the restriction z 6=
0. Since z = ekVm , this implies z > 0 and therefore get the

following stable system.

ż = −kbz(z − z02), where k, b, z > 0 (22)

Stability of (22) can be easily verified by linearization if

required, or considering the candidate Lyapunov function

[15] V = 1
2 (z − z02)

2, the time derivative of which gives

V̇ = −kbz(z−z02)
2 < 0. For a normal cell the ion channels

are not completely blocked i.e. the condition b > 0 is

valid for a cell in normal operating conditions. Further, from

(20) and the definition of z, the resting membrane potential

corresponding to the stable equilibrium z02 is given by

Vmr =
1

k
ln

(

a+ cd

b

)

. (23)

The pump current d in is not available for control, and a/b
has a constant value. But as b tends to infinity, the term cd/b
in (23) vanishes. Therefore, it is possible to alter the resting

membrane potential by changing b. This may be achieved by

increasing or lowering ion channel permeabilities by using

an ion species. Using nanoparticles will block ion channels

in the cell membrane, thus reducing the permeability val-

ues α1, α2 and α3 and thereby reducing the value of the

parameter b. For certain values of a/b, the introduction of

nanoparticles is expected to make z02 approach unity, and

Vmr approach 0.

Here it must be noted that the using [12, Equation (3b)]

and not [12, Equation (3a)] results in the stable system given

in (22). Using [12, Equation (3a)] results in a model with no

stable equilibrium points. This does not agree with physical

observations because the transmembrane potential stabilizes

to the resting membrane potential, therefore we have used

[12, Equation (3b)]. Further, if an unstable system model

based on [12, Equation (3a)] was used, then it would not be

possible to regulate the resting membrane potential Vmr by

changing the parameter b.
The effects of introducing nanoparticles on the resting

membrane potential is investigated by using simulations

and also by performing actual experiments. The results of

the simulations and experiments are compared in the next

section.

VI. SIMULATIONS AND EXPERIMENTS

Here we present the results based on the theoretical

discussion in the previous sections, and also compare them

with actual results of using nanoparticles to alter the rest-

ing membrane potential of CHO cells. Although a and b
are defined in (13) and (14) to depend on the individual

channel permeabilities α1, α2 and α3, expecting such fine

grained control may be impractical. This is because a cell

has many channels, and it may be very involved (if not

impossible) to quantify the effect of introducing a particular

type of nanoparticle on a specific ion channel. Therefore for
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Fig. 5. A plot showing z02 vs. b.
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−0.02

0
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V
m
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Fig. 6. A plot showing Vmr vs. b.

simulations, (and to match the experimental situation) it is

feasible to redefine a, b to model the overall effect of the ion

concentrations inside/outside a cell. For this purpose, let us

simplify (13) and (14) to the following,

a = γ1
(

[K
+
]i + [Na

+
]i + [Cl

−

]o
)

(24)

b = γ2
(

[K
+
]o + [Na

+
]o + [Cl

−

]i
)

(25)

where γ1(·) = 0.01γ2(·) for our simulations. The specific

relation γ1(·) = 0.01γ2(·) is chosen so the simulation results

produce values for the resting membrane potential which lie

in the practically observed range.

A. Simulation results

From (24), (25) we have a/b = 0.01. For the simulations

we set the capacitance Cm = 37pF (picofarads), temperature

T = 22◦C, R = 8.314JK−1mol−1, F = 96485Cmol−1

and the cell current d = 15pA (picoamperes). Note that

the values for the capacitance and current have been chosen

in accordance with values observed in [16]. The following

plots are obtained for the state z and the resting membrane

potential Vmr calculated using (23), by smoothly varying b in

the interval [0.42, 129]. Figure 5 shows how the equilibrium

point z02 varies as b is varied between 0.42 and 129. It

is observed from Fig. 5 that as the positive number b is

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Time−seconds

z

 

 

Fig. 7. A plot showing trajectories z(t) of the system in (18) for increasing
values of b. Red-solid curve corresponds to b = 1.5, blue-dashed curve
corresponds to b = 2, and black dash-dotted curve corresponds to b = 3.

0 0.2 0.4 0.6 0.8 1
−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

Time−seconds

V
m

 

 

Fig. 8. A plot showing the transmembrane potential Vm(t) for increasing
values of b. Red-solid curve corresponds to b = 1.5, blue-dashed curve
corresponds to b = 2, and black dash-dotted curve corresponds to b = 3.

decreased, z02 approaches unity. And as b is increased z02
approaches a

b
= 0.01 in this case.

Figure 6 shows how the resting membrane potential Vmr
varies as b is varied between 0.42 and 129. Recall that

z = ekVm , this implies that as z approaches a
b

= 0.01
corresponding to an increase in b then Vmr must tend to some

negative number. Such behavior is verified from Fig. 6 where

the resting membrane potential Vmr is seen to approach

−0.11V as b is increased towards 129. Similarly, a decrease

in b causes z to increase towards unity, which causes Vmr
to approach zero. This behavior is also clearly observed in

Fig. 6 where Vmr is seen to approach zero as b approaches

0.42. Also note that lower values for b correspond to lower

permeability values for the ion channels and higher values for

b correspond to a situation with ion channels having higher

permeability, as per the definitions in (24) and (25).

The plots in figures 7 and 8 show how the state z of the

system in (18), and therefore the transmembrane potential

Vm(t) stabilizes to different resting membrane potentials

Vmr corresponding to a change in b. In both Fig. 7 and

Fig. 8 the red-solid curve corresponds to b = 1.5, the blue-

dashed curve corresponds to b = 2, and black dash-dotted

curve corresponds to b = 3. An initial value of −80mV
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corresponding to the normal operating conditions of a cell is

assumed to be the initial condition for Vm, therefore all the

curves in Fig. 7 and Fig. 8 appear to begin from the same

initial point. As observed in Fig. 5 and Fig. 6, an increase

in b results in a decrease in z towards zero, and the resting

membrane potential Vmr decreases towards further negative

values. This behavior is clearly seen in figures 7 and 8 as

well. As b increases from 1.5 to 3, the trajectories for z(t) in

Fig. 7 stabilize to values closer to zero. Similarly in Fig. 8 it

is seen that as b increases from 1.5 to 3, the transmembrane

potential stabilizes to progressively more negative values. We

now proceed to verify if these observations are confirmed by

experimental results.

B. Comparison with experimental results

As mentioned in section II, from Fig. 2 it is observed

that the addition of nanoparticles has led to an increase in

DiBAC4(3) fluorescence. An increase in DiBAC4(3) fluores-

cence indicates an increased depolarization of the cell. An

increase in depolarization implies that the transmembrane

potential increases and approaches zero. From the discussion

in section IV-B, this implies that introducing the nanoparti-

cles may have actually decreased the permeability of certain

channels in CHO cells so that the resting membrane potential

approaches zero (see Fig. 6, a decrease in b causes Vmr
to approach zero. Since b depends on the permeability of

ion channels (the ion concentrations and the transmembrane

capacitance remaining constant), a decrease in b implies that

the introduction of nanoparticles results in a decrease in ion

channel permeabilities, which causes the membrane potential

to approach zero. Therefore our simulations agree with the

experimental observations.

VII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

A simple dynamical model is presented for the transmem-

brane potential of cells. This model allows the control of the

resting membrane potential by manipulating physiological

parameters. It is shown that standard cellular conditions

correspond to one stable equilibrium of the model. Based on

the theoretical developments and the results from simulations

and experiments, we can conclude that introducing nanopar-

ticles can alter the transmembrane potential. The simulation

results based on the model developed in this paper agree with

the experimental results suggesting that the introduction of

nanoparticles reduces ion channel permeability, making the

resting membrane potential approach zero. The plot shown in

Fig. 6, can be quickly generated for different types of cells in

order to figure out if a particular resting membrane potential

is achievable, and what approximate value for the term b may

be required. This model can be used prior to experiments to

achieve the desired resting membrane potential.

B. Future work

In the future, methods for implementing real-time state-

feedback control within a cell may become available, this can

help control the transients of the resting membrane potential

in response to chemical imbalances. The ability to predict

if the transmembrane potential of a cell can reach a target

value may help in the use of membrane potentials as a target

for cancer treatment.
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