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Abstract— Cooperative exploration requires multiple robotic
sensor platforms to navigate in an unknown scalar field to
reveal its global structure. Sensor readings from the platforms
are combined into estimates to direct motion and reduce noise.
We show that the combined estimates for the field value, the
gradient and the Hessian satisfy an information dynamic model
that does not depend on motion models of the platforms.
Based on this model, we design cooperative Kalman filters
that apply to general cooperative exploration missions. We
rigorously justify a set of sufficient conditions that guarantee the
convergence of the cooperative Kalman filters. These sufficient
conditions provide guidelines on mission design issues such as
the number of platforms to use, the shape of the platform
formation, and the motion for each platforms.

I. INTRODUCTION

Human activity has been one of the main factors leading to
changes in the environment. Profound problems such as acid
rain, red tides and global warming, result at least in part from
chemicals and waste produced by society. Finding scientific
evidence on specific factors most significant in affecting the
atmosphere or the ocean, requires many sensors to gather
comprehensive information from certain regions. When the
area of interest is very large, mobile sensor networks are
often the reasonable choice to reduce the number of sensor
nodes that have to be deployed. Recent theoretical and
experimental developments suggest that a balance between
data collection and feasible motion of sensor platforms is
key to mission success [1]–[3]. Finding an optimal strategy
is a challenging task.

In this paper, we present a general Kalman filter design for
mobile sensor networks to perform cooperative exploration
missions. Exploration missions are frequently encountered
in environmental applications where the mobile sensor plat-
forms are commanded to measure an unknown scalar field
corrupted by (correlated) noise. Since each platform can only
take one measurement at a time, the platforms should move
in a formation or a cluster to estimate local structures of
the field. Our Kalman filter combines sensor readings from
formation members to provide estimates for the field value
and the gradient. A separate cooperative filter was developed
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to estimate the Hessian in our previous work [4], where
a preliminary version of the Kalman filter is also derived.
In this paper, significant new theoretical developments have
been made to rigorously derive the cooperative Kalman filter.
We prove a set of sufficient conditions that a formation and
its motion need to satisfy to achieve the convergence of
the Kalman filter. Derivation of these sufficient conditions
is based on fundamental results connecting controllability
and observability of a (time-varying) filtering system to
its convergence in [5]–[7]. More recent developments in
[8]–[10] have relaxed the conditions for convergence of
Kalman filters to stabilizability and detectability, with even
weaker conditions for some special cases. In this paper,
we develop the sufficient conditions based on controllability
and observability conditions because the resulting constraints
on formation design are already mild enough, hence are
acceptable in typical applications.

Kalman filtering for mobile sensor network applications
have received recent attention in the literature. In [11], a
distributed Kalman filter method was proposed to decom-
pose a high order central Kalman filter into “micro” filters
computable by each sensor node. The estimates made by
each node are then combined using consensus filters [12]. A
similar approach is taken in [13] to address the target tracking
and coverage problems. Another type of Kalman filter design
is proposed in [14] where the entire field is partitioned into
cells and the movement of agents are controlled to maximize
collected information. The above contributions assume that
the (dynamic) model for a planar field is known to all
nodes, hence each individual is able to compute a Kalman
filter. Accordingly, the goal in these work is to implement
a distributed algorithm on many sensor nodes to improve
tracking or mapping precision.

For the cooperative exploration problem, on the other
hand, the field is completely unknown; a Kalman filter can
only be computed by combining readings across platforms.
The interest here is to use the minimum number of sensor
platforms to be able to navigate in the unknown scalar field
to reveal its structures e.g. follow level curves or gradients. In
[15], an adaptive scheme using the Kalman filter is developed
for interpolating data to construct a scalar field. These
contributions address different problems than this paper and
are complementary to our results.

The organization of this paper is as follows. In Section II,
we derive the information dynamics for a typical platform
formation moving in a planar scalar field. In Section III,
Kalman filtering techniques are applied to the information
dynamics. We establish sufficient conditions for the cooper-
ative Kalman filter to converge. A summary is presented in



Section IV.

II. INFORMATION DYNAMICS OF COOPERATIVE
EXPLORATION

In this section, we define the cooperative exploration prob-
lem and introduce the corresponding information dynamic
model. Let z(r) where r ∈ R2 be a smooth scalar field in
the plane that is unknown. The key idea for mobile sensor
networks is to employ multiple moving sensor platforms
to obtain the necessary estimates cooperatively and reduce
noise. This requires the platforms to be in a formation,
moving and collecting information simultaneously. In this
paper, we focus on the information collection rather than
the formation control aspects of the cooperative exploration
problem.

In most applications, the sensor measurements are taken
discretely over time. This is because the spatial range of
the scalar field is usually very large. Hence very small scale
fluctuations in the field should be filtered out as noise. Let
the moment when new measurements are available be tk
where k is an integer index. To simplify the derivation, we
do not consider the asynchronicity in the measurements; we
assume that all platforms have new measurements at time tk.
In reality, when there exists asynchronicity, the technique we
develop can still be applied with slight modifications.

Let the positions of the sensor platforms at time tk be ri,k ∈
R2 where i = 1,2, ...,N. We assume that the measurement
taken by the ith platform is modeled as

pi,k = z(ri,k)+w(ri,k)+ni,k (1)

where z(ri,k) is the value of the field at ri,k, ni,k ∼N (0,σ2
i )

are i.i.d. Gaussian noise, and w(ri,k) are spatially correlated
Gaussian noise. We define the following N×1 vectors:

pk =
[
pi,k
]
, zk =

[
z(ri,k)

]
, nk =

[
ni,k
]
, wk =

[
w(ri,k)

]
, (2)

and assume that nk and wk are stationary, i.e., their statistics
are time invariant. These assumptions are idealizations for
physical scalar fields in the ocean or atmosphere.

We define the problem of cooperative exploration as
follows:

Problem 2.1: Given measurements pk for all time tk and
the statistics of the noise nk and wk, find an estimate for the
field z(r) that minimizes an error metric J.

The choice of the error metric J depends on application.
In this paper, J is chosen to be the mean square error over
spatial domain.

The function z(ri,k) can be locally approximated by a
Taylor series. Let rc,k be the center of the platform formation
at time tk i.e. rc,k = 1

N ∑
N
i=1 ri,k. If ri,k is close to rc,k, then it

is sufficient to use the Taylor series up to second order. Let
zi,k = z(ri,k), then

zi,k ≈ z(rc,k)+(ri,k− rc,k)T
∇z(rc,k)

+
1
2
(ri,k− rT

c,k)∇
2z(rc,k)(ri,k− rc,k) (3)

for i = 1,2, ...,N. We are interested in estimates of z(rc,k),
∇z(rc,k), and ∇2z(rc,k). In addition to providing insights on

the structure of the scalar field, these estimates are also used
in the steering control for the center of the formation, as
shown in our previous work [4].

A. The Measurement Equations

Let sk = [z(rc,k),∇z(rc,k)T ]T . Let Ck be the N× 3 matrix
defined by

Ck =


1 (r1,k− rc,k)T

...
...

1 (rN,k− rc,k)T

 . (4)

Let Dk be the N× 4 matrix with its ith row vector defined
by 1

2 ((ri,k− rc,k)⊗ (ri,k− rc,k))T where ⊗ is the Kronecker
product. For any 2× 2 matrix H, we use the notation ~H
to represent a column vector defined by rearranging the
elements of H as follows

~H = [H11,H21,H12,H22]T . (5)

Then the Taylor expansions (3) for all sensor platforms near
rc,k can be re-written in a vector form as

zk = Cksk +Dk
~∇2z(rc,k) (6)

where ~∇2z(rc,k) is a 4× 1 column vector obtained by re-
arranging elements of the Hessian ∇2z(rc,k) as defined by
(5).

Suppose that ~Hc,k is an estimate for the Hessian ~∇2z(rc,k)
in vector form. Equation (1) can now be written as

pk = Cksk +Dk~Hc,k +wk +Dkek +nk (7)

where ek represents the error in the estimate of the Hessian.
Let Wk = E[wkwT

k ], Uk = E[ekeT
k ], and Rk = E[nknT

k ]. The
noise wk is “colored” because it originates from the spatial
correlation of the field. Let E[wkwT

k−1] = Vk. We suppose
that Wk, Rk and Vk are known once the positions of the
platforms are known. This assumption is reasonable in ocean
and meteorology applications since the statistical properties
of ocean fields and atmospheric fields are usually known
from accumulated observational data over a long period of
time. We also assume that Uk determined by the accuracy of
the Hessian estimation algorithm is known.

B. The State Dynamics

As the center of the formation moves, the states sk =
[z(rc,k),∇z(rc,k)T ]T evolve according to the following equa-
tions:

z(rc,k) = z(rc,k−1)+(rc,k− rc,k−1)T
∇z(rc,k−1)

∇z(rc,k) = ∇z(rc,k−1)+Hc,k−1(rc,k− rc,k−1). (8)

Let hk−1 = [0,E[Hc,k−1(rc,k − rc,k−1)]T ]T and As
k−1 =[

1 (rc,k− rc,k−1)T

0 I2×2

]
. We then rewrite (8) as

sk = As
k−1sk−1 +hk−1 +εk−1 (9)

where we have introduced the N×1 noise vector εk−1 which
accounts for positioning errors, estimation errors for the



Hessians, and errors caused by higher order terms omitted
from the Taylor expansion. We assume that εk−1 are i.i.d
Gaussian with zero mean and known covariance matrix Mk−1
that is positive definite.

C. The Noise Dynamics

The noise wk in the measurement equation (7) is colored.
The standard technique (c.f. [16]) to handle this issue is to
model wk as

wk = Aw
k−1wk−1 +ηk−1 (10)

where ηk−1 is white noise with positive definite correlation
matrix Qk = E[ηkη

T
k ]. Because

Vk = E[wkwT
k−1] = Aw

k−1E[wk−1wT
k−1] = Aw

k−1Wk−1

Wk = E[wkwT
k ] = Aw

k−1Wk−1(Aw
k−1)

T +Qk−1, (11)

we have

Aw
k−1 = VkW−1

k−1

Qk−1 = Wk−Aw
k−1Wk−1(Aw

k−1)
T . (12)

Remark 2.2: State equation (9) reveals the major dif-
ference between the cooperative exploration problem con-
sidered in this paper and the tracking/coverage problems
considered in [11], [13], [14]. Equation (9), fundamental
to the cooperative exploration problem, is only valid for
the formation and does not make sense for each individual
node, since As

k−1 and hk−1 depend on the location of all
platforms in the formation. Therefore, the distributed Kalman
filter algorithms for tracking and coverage in [11], [13], and
[14], which achieve consensus between nodes and increase
computation efficiency, are not applicable here. The central
problem here is to use the minimum number of platforms
with coordinated motion to estimate the field. For this
purpose, we design the cooperative Kalman filter in the next
section.

III. THE COOPERATIVE KALMAN FILTER

We observe from the information dynamics modeled by
(9), (10), and (7) that if the Hessian related term hk−1 is
known for all k, then the system belongs to the category for
which Kalman filters can be constructed. We have shown in
[4] that hk−1 can be estimated. Thus standard procedures can
be followed to obtain a Kalman filter, which will be called the
cooperative Kalman filter in this section because it can only
be computed by a formation and its performance depends on
the configuration of the formation. As the new contribution,
we establish sufficient conditions that a formation must
satisfy for the cooperative Kalman filter to converge.

A. Cooperative Kalman Filter Equations

The equations for Kalman filters are obtained by canonical
procedures, the formulas are derived following textbooks
[16]–[18]. We will not repeat these equations due to space
limit.

In order to design a Kalman filter with colored mea-
surement noise wk, a well-known method devised in [19]

can be applied by defining a new measurement p̃k as p̃k =
pk−Aw

k−1pk−1. This gives a new equation for measurements:

p̃k = (CkAs
k−1−Aw

k−1Ck−1)sk−1 +Ckhk−1

+(Dk~Hc,k−Aw
k−1

~Hc,k−1)
+Ckεk−1 +Dkek−Aw

k−1Dk−1ek−1

+nk−Aw
k−1nk−1. (13)

The equations (9), (10), and (13) are now the state and the
measurement equations for the case when wk 6= 0. The states
are [sT

k ,wT
k ]T , the output is p̃k, the state noise is εk−1, and the

observation noise is Ckεk−1 + Dkek −Aw
k−1Dk−1ek−1 + nk −

Aw
k−1nk−1. The Kalman filter design procedure for this case

can be found in most textbooks and will not be repeated
here.

B. Convergence of the Cooperative Kalman Filter

Kalman filters converge if the time-varying system dy-
namics are uniformly completely controllable and uniformly
completely observable [7]. In our case, these conditions
are determined by the number of platforms employed, the
geometric shape of the platform formation, and the speed
of each platform. We develop a set of constraints for these
factors so that the uniformly complete controllability and
observability conditions are satisfied, which then guarantees
convergence of the cooperative Kalman filter.

Let Φ(k, j) be the state transition matrix from time t j to tk
where k > j, then one must have Φ(k, j) = As

k−1As
k−2 · · ·As

j
and Φ( j,k) = Φ−1(k, j). The following lemma follows from
direct calculation.

Lemma 3.1: For Φ(k, j) as defined above and Ck as de-
fined in (4), we have, for k 6= j,

Φ(k, j) =

[
1 (rc,k− rc, j)T

0 I2×2

]
(14)

and

CkΦ(k, j) =


1 (r1,k− rc, j)T

...
...

1 (rN,k− rc, j)T

 . (15)

Remark 3.2: Note that this lemma holds for both k > j
and k < j. It applies to formations with any shape and any
motion.

For clarity, we restate the definitions for uniformly com-
plete controllability and uniformly complete observability in
[7] using notations in this paper.

Definition 3.3: The state dynamics (9) are uniformly com-
pletely controllable if there exist τ1 > 0, β1 > 0, and β2 > 0
(independent of k) such that the controllability Grammian

C (k,k− τ1) =
k

∑
j=k−τ1

Φ(k, j)M j−1Φ
T (k, j) (16)

satisfies
β1I3×3 ≤ C (k,k− τ1)≤ β2I3×3 (17)

for all k > τ1. Here M j−1 is the covariance matrix for state
noise ε j−1.



Definition 3.4: Suppose wk = 0 for all k. The state dy-
namics (9) together with the measurement equation (7) is
uniformly completely observable if there exist τ2 > 0, β3 > 0,
and β4 > 0 (independent of k) such that the observability
Grammian

J (k,k− τ2) =
k

∑
j=k−τ2

Φ
T ( j,k)CT

j [D jU jDT
j +R j]−1C jΦ( j,k)

(18)
satisfies

β3I3×3 ≤J (k,k− τ2)≤ β4I3×3 (19)

for all k > τ2. Here U j and R j are covariance matrices for
noises e j and n j respectively.

If wk 6= 0, the measurement equation is (13) instead of (7).
Then the observability Grammian is

J w(k,k− τ2) =
k

∑
j=k−τ2

Φ
T ( j,k)C̃T

j R̃−1
j C̃ jΦ( j,k) (20)

where C̃ j = C jAs
j−1−Aw

j−1C j−1 and

R̃ j = C jM j−1CT
j +D jU jDT

j +Aw
j−1D j−1U j−1D j−1AwT

j−1

+R j +Aw
j−1R j−1AwT

j−1.
(21)

The condition for uniformly complete observability is

β3I3×3 ≤J w(k,k− τ2)≤ β4I3×3. (22)

In the following discussions, we derive constraints on the
formations so that the uniformly complete controllability and
observability conditions are satisfied. The general procedure
is to show that there exist positive real numbers β1, β2,
..., β28 that serve as time-independent bounds for various
quantities. The actual value for these bounds do not affect
the correctness of our arguments.

For uniformly complete controllability the following
lemma holds.

Lemma 3.5: The state dynamics (9) are uniformly com-
pletely controllable if the following conditions are satisfied:

(Cd1) The symmetric matrix M j−1 is uniformly bounded i.e.
β5I ≤ M j−1 ≤ β6I for all j and for some constants
β5,β6 > 0.

(Cd2) The speed of each platform is uniformly bounded i.e.∥∥ri, j− ri, j−1
∥∥≤ β7 for all time j, for i = 1, ...,N, and

for some constant β7 > 0.
Proof: Due to condition (Cd1), the controllability

Grammian satisfies β5 ∑
k
j=k−τ1

Φ(k, j)ΦT (k, j)≤C (k,k−τ1)
and C (k,k− τ1)≤ β6 ∑

k
j=k−τ1

Φ(k, j)ΦT (k, j) for any k and
τ1 such that k > τ1. We first observe that Φ(k, j)ΦT (k, j) is
a positive semi-definite symmetric matrix for each j such
that k− τ1 ≤ j ≤ k. If we can find uniform bounds for each
of these matrices i.e. Φ(k, j)ΦT (k, j), we obtain an overall
bound for the controllability Grammian.

We apply Lemma 3.1 to compute Φ(k, j)ΦT (k, j) i.e.

Φ(k, j)ΦT (k, j) =

[
1+‖δr(k, j)‖2 (δr(k, j))T

δr(k, j) I2×2

]
(23)

where we define δr(k, j) = rc,k− rc, j. The minimum eigen-
value of matrix (23) is

λmin =
1
2

(
‖δr(k, j)‖2 +2−

√
(‖δr(k, j)‖2 +2)2−4

)
and the maximum eigenvalue is

λmax =
1
2

(
‖δr(k, j)‖2 +2+

√
(‖δr(k, j)‖2 +2)2−4

)
.

Since (Cd2) is satisfied and δr(k, j) is the averaged
movement over all platforms between time j and k, we must
have ‖δr(k, j)‖ ≤ (k− j)β7 ≤ τ1β7 for all j ∈ [k− τ1,k]. It
is straightforward to show that λmin assumes its minimum
value when ‖δr(k, j)‖ = τ1β7. This minimum value is
β8 = 1

2

(
(τ1β7)2 +2−

√
(τ1β7)2 +2)2−4

)
. We can see that

β8 > 0. On the other hand, λmax assumes its maximum value
also when ‖δr(k, j)‖= τ1β7. This maximum value is β9 =
1
2

(
(τ1β7)2 +2+

√
(τ1β7)2 +2)2−4

)
, and β9 > 0. There-

fore, we conclude that β8I3×3 ≤ Φ(k, j)ΦT (k, j) ≤ β9I3×3
for all j ∈ [k − τ1,k]. Thus β5τ1β8I3×3 ≤ C (k,k − τ1) ≤
β6τ1β9I3×3. Let β1 = β5τ1β8 and β2 = β6τ1β9. Since β1
and β2 do not depend on k, we have proved the uniformly
complete controllability claim using Definition 3.3.
By the arguments for proving Lemma 3.5, we have also
proved the following lemma.

Lemma 3.6: Suppose condition (Cd2) is satisfied. Then
there exist constants τ1 > 0, β8 > 0, and β9 > 0 such that the
state transition matrices satisfy

β8I3×3 ≤Φ(i, j)ΦT (i, j)≤ β9I3×3 (24)

for all i, j ∈ [k− τ1,k] and for all k > τ1.
To prove uniformly complete observability, we also need

an elementary lemma that we do not show the proof.
Lemma 3.7: Suppose two 2×1 vectors a1 and a2 form an

angle γ such that 0 < γ < π . Then the minimum eigenvalue
λmin of the 2×2 matrix A = a1aT

1 +a2aT
2 is strictly positive

i.e. λmin > 0.
We have the following lemma regarding uniformly com-

plete observability of a moving formation.
Lemma 3.8: Suppose wk = 0 for all k. The state dynamics

(9) with the measurement equation (7) are uniformly com-
pletely observable if (Cd2) and the following conditions are
satisfied:

(Cd3) The symmetric matrices R j and U j are uniformly
bounded, i.e., β10IN×N ≤ R j ≤ β11IN×N and 0 ≤U j ≤
β12IN×N for all j and for some constants β10,β11,β12 >
0.

(Cd4) The distance between each platform and the formation
center is uniformly bounded from both above and
below, i.e., β13 ≤

∥∥ri, j− rc, j
∥∥ ≤ β14 for all j, for

i = 1,2, ...,N, and for some constants β13,β14 > 0.
(Cd5) There exists a constant time difference τ2 and for all

k > τ2, there exist time instances j1, j2 ∈ [k− τ2,k]
where j1 < j2, as well as two platforms indexed by i1
and i2, such that one of the following two conditions
is satisfied:



(Cd5.1) The two vectors, ri1, j1−rc, j1 and rc, j1−rc, j2 form
an angle γ1 that is uniformly bounded away from
0 or π . In other words, there exists a positive
constant β15 < 1 such that sin(γ1/2)≥ β15.

(Cd5.2) The two vectors, ri1, j1 − rc, j1 and ri2, j2 − rc, j2
form an angle γ2 that is uniformly bounded away
from 0 or π . In other words, there exists a positive
constant β15 < 1 such that sin(γ2/2)≥ β15.

Proof: Condition (Cd3) implies that U j is positive semi-
definite, and condition (Cd4) implies that every component
of D j is bounded above. Hence the matrix D jU jDT

j is
a positive semi-definite matrix with its maximum eigen-
value bounded above. Also from (Cd3), R j is a positive
definite symmetric matrix. Therefore, Weyl’s theorem (c.f.
[20], Theorem 4.3.1) that states the eigenvalues of the
sum of two Hermitian matrices are bounded above by
the sum of the two maximum eigenvalues and bounded
below by the sum of the two minimum eigenvalues can
be applied to R j + D jU jDT

j . This implies that there exist
positive constants β16,β17 > 0 such that β16IN×N ≤ (R j +
D jU jDT

j ) ≤ β17IN×N where β16 ≥ β10 and β17 ≥ β11. Thus,
one must have β

−1
17 ∑

k
j=k−τ2

ΦT ( j,k)CT
j C jΦ( j,k)≤J (k,k−

τ2)≤ β
−1
16 ∑

k
j=k−τ2

ΦT ( j,k)CT
j C jΦ( j,k) for all k > τ2. Next,

we prove the existence of positive uniform upper and lower
bounds for ∑

k
j=k−τ2

ΦT ( j,k)CT
j C jΦ( j,k) for all k > τ2.

First for the upper bound, according to Lemma 3.1, we
can compute

Φ
T ( j,k)CT

j C jΦ( j,k)

=

[
N (rc, j− rc,k)T

(rc, j− rc,k) ∑
N
i=1(ri, j− rc,k)(ri, j− rc,k)T

]
.

The condition (Cd2) and (Cd4) imply that each component
of the above matrix is bounded above. Hence there exists
β18 > 0 such that ΦT ( j,k)CT

j C jΦ( j,k)≤ β18I3×3.
We now use condition (Cd5) to argue that there

exists the lower bound β19 > 0 such that β19I3×3 ≤
∑

k
j=k−τ2

ΦT ( j,k)CT
j C jΦ( j,k). Consider the two time in-

stances indexed by j1 and j2 as given by condition (Cd5). It
is sufficient to show that the matrix I defined by

I = Φ
T ( j1,k)CT

j1C j1Φ( j1,k)+Φ
T ( j2,k)CT

j2C j2Φ( j2,k)
(25)

satisfies I ≥ β19I3×3.
Because Φ( j1,k) = Φ( j1, j2)Φ( j2,k), we have I =

ΦT ( j1,k)I1ΦT ( j1,k) where

I1 = Φ
T ( j1, j2)CT

j1C j1Φ( j1, j2)+CT
j2C j2 . (26)

By direct calculation one can verify that

CT
j2C j2 =

[
N 0

0 ∑
N
i=1(ri, j2 − rc, j2)(ri, j2 − rc, j2)

T

]
. (27)

Using Lemma 3.1 and the fact that ∑
N
i=1(ri, j1 − rc, j1) = 0,

we have

Φ
T ( j1, j2)CT

j1C j1Φ( j1, j2)

=

[
1 (rc, j1 − rc, j2)

T

rc, j1 − rc, j2 (rc, j1 − rc, j2)(rc, j1 − rc, j2)
T

]

+

[
N−1 0

0 ∑
N
i=1(ri, j1 − rc, j1)(ri, j1 − rc, j1)

T

]

+

[
0 0
0 (N−1)(rc, j1 − rc, j2)(rc, j1 − rc, j2)

T

]
. (28)

Then the matrix I1 can be obtained by adding (27) and (28)
together. Considering the platforms i1 and i2 in (Cd5.1) and
(Cd5.2), we can further decompose I1 as the sum of two

matrices: I1 = I2 +I3 where I2 =

[
1 0
0 I4

]
with

I4 = (ri1, j1 − rc, j1)(ri1, j1 − rc, j1)
T

+(ri1, j2 − rc, j2)(ri1, j2 − rc, j2)
T

+(rc, j1 − rc, j2)(rc, j1 − rc, j2)
T , (29)

and I3 is a positive semi-definite matrix.
Because either condition (Cd5.1) or condition (Cd5.2) is

satisfied, according to Lemma 3.7, there exists β21 > 0 such
that the matrix I4 ≥ β21I2×2. Therefore, using the Weyl’s
theorem (c.f. [20], Theorem 4.3.1) we conclude that there
exists β20 > 0 such that I1 ≥ β20I3×3. Then Lemma 3.6
guarantees the existence of β19 > 0 such that I ≥ β19I3×3,
which further implies that J (k,k− τ2)≥ β19I3×3.

Because both the uniform upper and lower bounds for the
observability Grammian J (k,k−τ2) exist for all k > τ2, we
have proved the uniformly complete observability claim.

We now consider the case when the colored noise wk 6= 0.
The following lemma establishes the sufficient conditions for
uniformly complete observability.

Lemma 3.9: The state dynamics (9) and (10) with the
measurement equation (13) are uniformly completely ob-
servable if (Cd2), (Cd4), and the following conditions are
satisfied:

(Cd6) The symmetric matrix R̃ j is uniformly bounded i.e.
β22IN×N ≤ R̃ j ≤ β23IN×N for all j and some positive
constants β22 and β23.

(Cd7) The matrix Aw
j−1 and the matrix C j−1 satisfy

β24IN×N ≤ (IN×N −Aw
j−1)

T (IN×N −Aw
j−1)

T ≤ β25IN×N

and β26IN×N ≤CT
j−1C j−1 ≤ β27IN×N for some positive

constants β24,β25,β26 and β27.
(Cd8) The constants β7 in (Cd2) and the constants β24,β26 in

(Cd7) satisfy β7
√

N +β28 <
√

β24β26 for some positive
constant β28.

Proof: Condition (Cd6) implies that
β
−1
23 ∑

k
j=k−τ2

ΦT ( j,k)C̃T
j C̃ jΦ

T ( j,k) ≤ J w(k,k − τ2) and
J w(k,k− τ2)≤ β

−1
22 ∑

k
j=k−τ2

ΦT ( j,k)C̃T
j C̃ jΦ

T ( j,k).

Consider C̃ j = C jAs
j−1−Aw

j−1C j−1. Using Lemma 3.1 we



have C jAs
j−1 = C j−1 +δC j where

δC j =


0 (r1, j− rc, j−1)T

...
...

0 (rN, j− rc, j−1)T

 . (30)

Therefore, C̃ j = (IN×N − Aw
j−1)C j−1 + δC j. Applying the

Hoffman-Wielandt theorem ( [20], Theorem 7.3.8), we have∣∣∣∣√λmin(C̃T
j C̃ j)

−
√

λmin(CT
j−1(IN×N−Aw

j−1)T (IN×N−Aw
j−1)C j−1)

∣∣∣
≤
√

trace(δC jδCT
j ). (31)

Thus using condition (Cd8), we have√
λmin(C̃T

j C̃ j)

≥
√

λmin(CT
j−1(IN×N−Aw

j−1)T (IN×N−Aw
j−1)C j−1)

− trace(δC jδCT
j )≥

√
β24β26−β7

√
N > β28. (32)

Therefore ∑
k
j=k−τ2

ΦT ( j,k)C̃T
j C̃ jΦ

T ( j,k) is uniformly
bounded below, away from singular matrices. It is also
uniformly bounded above by conditions (Cd2), (Cd4) and
(Cd7). Hence J w(k,k− τ2) is uniformly bounded below,
away from singular matrices, and above.

With Lemmas 3.5, 3.8, and 3.9 justified, the following
theorems can be viewed as corollaries of Theorem 7.4 in
[7].

Theorem 3.10: Suppose wk = 0 for all k. Consider the
state dynamics (9) with the measurement equation (7). If
the conditions (Cd1)-(Cd5) are satisfied, then the cooperative
Kalman filter converges and the error covariance matrix Pk
is bounded as k→ ∞.

Theorem 3.11: Consider the state dynamics (9) and (10)
with the measurement equation (13). If the conditions (Cd1)-
(Cd2), (Cd4) and (Cd6)-(Cd8) are satisfied, then the coop-
erative Kalman filter for this case converges and the error
covariance matrix is bounded as k→ ∞.

C. Formation design principles

The conditions (Cd1)-(Cd8) have provided us the fol-
lowing intuitive guidelines for formation design to yield
successful cooperative Kalman filters.

1) If N ≥ 3, there is no penalty in fixing the orientation
of the formation, as long as the shape is nonsingular.
A singular formation occurs when all platforms are on
a straight line or collapse to a point. In fact, if the
formation is singular only occasionally, the Kalman
filter will still converge.

2) If N = 2 or a line formation is desired, then one should
make the orientation of the line change over time, such
as in a rocking or rolling motion.

3) The speed of the platforms needs to be bounded from
both above and below to guarantee the controllability
and observability conditions at the same time. Such

bounds depend on the strength of the error covariance
matrices.

IV. SUMMARY

We formulate the cooperative exploration problem and
introduce a cooperative Kalman filter to estimate local struc-
tures of an unknown scalar field in the plane. We provide
sufficient conditions for the cooperative Kalman filter to
converge. To satisfy these conditions, we may use at least
two sensor platforms. There is an advantage of using three
or more platforms since the orientation of the formation can
be kept fixed, reducing the speed variations for each platform.
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