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Abstract

We propose a control law which allows a satellite forma-
tion to achieve orbit transfer. During the transfer, the
formation can be either maintained or modified to a de-
sired one. Based on the orbit transfer control law pro-
posed by Chang, Chichika and Marsden for single satel-
lite, we add coupling terms to the summation of Lya-
punov functions for single satellites. These terms are
functions of the difference between the mean anomalies
{or perigee passing times) of formation members. The
asymptotic stability of the desired formation in desired
orbits is proved.

1 Introduction

This paper is concerned with the problem of achieving a

satellite formation near s designated elliptic orbit. For-

orbits near the earth, one can use a space shuttle to
place satellites into specified relative positions. What
we want to consider here is the case when members
of the formation have been placed relatively far apart.
They have to use their on-board thrusters to get to the
desired orbits to form the desired formation, A similar
case is when the whole formation has to be restructured
for mission-related reasons. We want the formation to
be maintained to some extent during the transfer and
be re-established after the transfer.

Our approach is to use Lyapunov functions to design
the control laws for orbit transfer. The Lyapunov func-
tion will achieve a local minimum when correct orbit
and formation are reached. In [4], a Lyapunov function
is expressed as a quadratic function of the differences of
orbital elements between current orbit and the destina-
tion orbit. However, the convergence of the associated
control law is not proved.

give a proof of convergence. This algorithm is based
on a Lyapunov function on the shape space of elliptic
orbits in our previous work [5], the work of Chang,
Chichka and Marsden [1] and a result of Cushman and
Bates [2]. However, the most significant extension is
the addition of a coupling term which is a function of
the difference between the osculating perigee passing
times.

In section 2, we develop formulas used in the proofs of
our theorems. In section 3, a brief summary of results
in [1] and [5] are given.We introduce the definition of
periodic satellite formations in section 4. Cur main
results and proofs about orbit transfer of periodic for-
mations are presented in section 5. Simulation results
are shown in section 6.

2 Preparations

H the mass of a salellile is small compared to the mass
of the earth, the Kepler two body problem can be ap-
proximated by a one center problem as:

mi=-VVetau D)

where ¢ € R? is the position vector of the satellite
relative to the center of the earth, m is the mass of the
satellite, Viz is the gravitational potential of the carth,
u is the control force plus other disturbances. Without
considering higher order terms, Vi takes the form

B
TPY

Let p = mg be the momentum vector of the satellite.
For simplicity we assume that all the satellites
considered in this paper have unit mass.

Ve = (2)

Let us make the following definitions:

In this paper, we develop a new control algorithm and ) = q(t) xp(t)
t

1This research was supported in part by the National Aero- Aty = pll)xIl{t)—p Q(t)
nsutics und Space Adininistration under NASA-GSFC Grant No. " al ) ”
NAGS5-10819, by the Air Force Office of Scientific Research un- | A !
der AFOSR Grant No. F40620-01-0415, by the Army Research eft) = ——
Office under QDDR&E MURIO7 Program Grant No. DAAGES- K
97-1-0114 to the Center for Dynamics and Control of Smart h(t)2
Structures (through Harvard University), and under ODDR&E a(t) = m
MURIOQL Program Grant No, DAADI19-01-1-0465 to the Center
for Communicating Networked Control Systems (through Boston cos ( E ( f)) . __1_ (1 _ @)
University). g - e(t) aft)

0-7803-7516-5/02/$17.00 ©2002 IEEE

4095



M{t) E(t) - e{t)sin(E(t)) (3)
where A{t) = || I{(#) || and r{(#) = || g(#)]. These formu-
las can be found in textbooks on celestial mechanics
[3]. ! is the angular momentum vector. A is called the
Laplace vector. They are conserved if u(t) = 0. a is the
length of the semi-major axis and ¢ is the eccentricity.
E is the eccentric anomaly and A is the mean anomaly.
The last equation is Kepler's equation. When e{t) = 0,
the eccentric anomaly E(t) is defined to be M({t}. For

now, we will assume that e(t) # 0.

Notice that these formulas are valid for all ¢ and all
the elements are differentiable on R? x R? ~ {0}. So
we can take derivative on both sides of equations (3).
By using the property that I, A,a and e are conserved
when u(t) = 0, we have

ity = oult) (4
A) = St %)
, 1,84 p~ .
&(t) = ;(55)TA “u(t) (6)

-

where 4 is the unit vector along the direction of A. We
also have

2 ol

i = —= (=7 ut
afl) = e —62)(3}7) I ult)
2ae  ,0A 7~
+m(5) A-uft) {7
One can verily that,
w_ ful | ocos(E} . r .

E= \/:r * esin(E)f3 aﬂesin(E)a (8)
M = (1 — ecos(E))E — é sin{E) (9)

Combining this equation with equation (8),(7)and (6),
we have

M=n+ n(%—ﬁ)% “uft) + g(%)ﬂ “uft)  (10)

where n = \/g and

_2(1—ecos(E))®

pae(l — e?)sin(E)
cos(E)y—e 2(1—ecos(E))?
pesin{E}  p(l —e?)sin(E)

£, A, E)

a(l, A, E) (11)

Notice that £ and n will be oc if sin(E) = 0. In order
to prevent this from happening in our control laws, we
will turn off the control when sin(E) = 0.
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3 Orbit transfer of single satellite

For a single satellite on an elliptic orbit, the set D of or-
dered pairs ({, A) is a subset of ®3 x"R? with Euclidean
nortn, '

D={l,A) e R*xB*|A-1=0,l #0,[| A]| <m’u}

(12)
Let W = %m I ¢ 1+ Ve be the total energy of the satel-
lite. Let P be the set of all pairs {g, p) with Euclidean
norm. Then we can define a set £, as

Ze={{a,p) € P|W(q.p) <0,l#0}

By the definition of I and A, we have a mapping 7 :
EE i D: (QP) Lned (ls A)

(13)

Theorem 3.1 (Chang-Chichka-Marsden) [1]The fol-
lowing hold:

1. I, is the union of all elliptic Keplerian orbiits.

2 7(B)=D and £, = 77 1(D).

3. The fiber n71((I, A)) is & unique (oriented) elliptic
Keplerian orbit for each (I, A) € D. (see also, [2], page
58)

The mapping 7 is a continuous mapping because ([, A)
are continuous with respect to {(g,p).

Corollary 3.2 7 {K) is compact for any compact set
KcD(ctf [5)

To control the orbit transfer of a single satellite, one
considers a Lyapunov function from [1)

_1 2 2

Vigpy =5l -Ll"+1A-Al")  (14)

where (lg, Agq) is the pair of the angular momentum

vector and Laplace vector of the target elliptic{circular)
orbit. If we let the control to be

w=—{(l—la)xg+Ix{A—Aa}+{(A—-Az)xp)xq] {15)

then V < 0 along the trajectory of the closed loop
system. The following theorem is proved:

Theorem 3.3 (Chang-Chichka-Marsden) There ezists
¢ > () such that if V{go,po) < ¢, by applying the control
law as in equation (15), the trajectory of the closed loop
system starting at (go,po) will asympteiically converge
to the target orhit 7= ((14, Aq))

4 Periodic formation

Suppose we have a formation consisting of m satellites.
Let O; denote the orbit of the jth satellite. We can
make the following definition:

Definition 4.1 A formation is periodic when a;, the
length of semi-major axis of orbit O, satisfies a; =
a>0foralli =12 ..m



This definition is valid since all the satellites in a peri-
odic formation will have the same orbital period

. 27r\/a_3
M

Thus although the shape of the formation is varying,
it is varying periodically. However, the differences be-
tween the perigee passing times, (1; —7;), are constants.
Because the mean anomaly is

{16)

A’Ii = n,;(t - T,'} (17)
where n; = 2n/T , then {M; — M) are constants. By
specifying the values of (r, — 7;) or (M — Af;) for all
i and j, a periodic formation can be uniquely deter-
mined.

5 Control laws for orbit transfer of satellite
formations

To set up a periodic formation of two satellites, one can
control each satellite separately to transfer to its target
orbit. However, this will not assure the correct values
of (; — 1) or (M; — M;). In order to do that, extra
terms involving (7 —7;} or (4f; — M) should be added
in the summation of the Lyapunov functions for single
satellites. This extension will result in a cooperative
orbit transfer of multiple satellites.

We introduce a variable Y; which is defined as

T = W/ZSMI, if Bie(—emte)
d
. 3
T, = —=(2m — M;),if E; € (m — €, 2% + €]18)
F)
for ¢ = 1,2, where a4 is the common length of the

semi-major axes for the destination orbits.

Here, the trouble of using different expressions for the
cases By € (—¢,m+¢) and E; € {(m—¢,27+¢) is caused
by the fact that E; € S! & circle. Two coordinate
charts are required on S'. Here we pick the charts to
be

Py (—e, 7+ €)= (—e,m+€) 5.t E; — Ej

Yo (T - €27 +¢€) = (—67 +¢) s.bB; = (27— E) (19

Here, the value of € is chosen so that the two satellites
will always be in the same chart. Because in a satel-
lite formation the angular separations between satel-
lites are usually small, the value of ¢ is small.

For E; € (—e, 7+ ¢), we have

1/5-M,- + §,/ﬂa,-M,-

T,

)TA cui(t)

i

3]
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+((k A E)(-"")Ti () )
where
CL? 3 a; 2
¢ = \/;;E(li:Ai:Ef)-i_E\/;gM——l_—%—z)ﬂﬂ
3 3 /a 2a;e;
_ a? ALE, 3 1_—111
) ‘/;fg(zt,A,E)+2\/7u(1 )1(21)

For E; € (m—¢,2n + ¢),

\/7111-4- Fﬂ,(?n’—]\f
\f ol A5, B) Gt A )

6l Aus BTl )

(22)

where

g:_\/:ge(z Ay, E)+ “'—-——(er M)
ay u(l—¢f)

= — a_? L. A: E)+3 &
p_ agn( T4 T 1 J;

2
Notice that we have terms that explicitly contain Af;.
If not handled well,these terms will cause discontinu-
ity in our control algorithm when the satellites enter
a new chart. The reason for us to pick the particular
charts (¥1.¢7) is to reduce the discontinuities in the
derivatives of T; caused by changing charts.

2a;e;
W(OW M) (23)

We will design a Lyapunov function on the phase space
of the two satellites. This one function will have dif
ferent expressions in different charts. The Lyapunov
function is

VvV = V1+V2+4sf.n(m)2

if E;€(—e,m+¢€)
vV = V1+V2+4sin(w)2

if Bie(m—e2n+e (24}

where

1

Vo= (- - Aar 1)
_ 1 2 2 -

Voo = gz —laz "+ 11 A2 — Aa Iy (25)

Here, (Iq1, Ag,) and (42, Ag,) specify the orbits in a
two-satellite periodic formation and ¢ specifies the de-
sired (M} — Afy) on these orbits,

We can calculate the derivative of V as

V=th s+ sm(Lgﬁi?)m -Ts)  (26)



The choice of — or + depends on the value of E; as in
the definition of V. By the calculations performed in
the single satellite case,

Vi = [(h—la)xqi + lix (A — Agi)
H{(Aq ~ Agg) xpi) % gi] - g (27)

for i = 1,2. Thus

1 = [(bh = Loy + Grsin(—2F2) ) x g1 +
Lx(A) — Ag + prsin(D=FEe) 4 )4

({A: = Aqy + prsin(T=RE Ay xpy ) Xy -
Hl(lz — laz = Casin{ =22, ) x go+
lax(Az — Agz — posin(T=T2¥2) Aoy 4
(A2 = Az — pasin(T=32%2) B5) x py) x q3] - uf28)
In order to get V < 0, we let
up = —sin?(E)((h — la + Gsin{ B=E2E2)l ) x g +
Lhix{A — Aq + plsiﬂ(W)zﬂ-{-
(A — Ag + PlSin(T]_#é)A\l)Xpl)Xqﬂ
uz = ~sin*(Ey)|(la — laa — Cosin( D=2 ) x g+
lax(Ag — Aap ~ PzSin(Tl#g)Zz)"'
(A2 — Agz — posin(T1=iE2) Ay)xpy) x o) (29)
Notice that the factors sin?(E;) cancel the term
sin{E;) in the denominators of ¢; and p;. This will

result in a continuous control law which will be 0 when
E@' = 0, .

Let 2 = {g1.p1.4¢2,p2). We now proceed to find the
initial condition zp = (q1(0). pi(0), g2(2). p2(0)) for z
s.t. the set

Sa = {=lV(z) < V(z)} (30)

is a compact subset of Zey x Loz — {2]A41 =Qor A =
0}. This is a necessary step because we want to apply
LaSalle’s invariance principle to prove our main result,

Lemma 5.1 Let
c < min{er. ez} {(31)
where
. 1 2 1 2 1 2y e
¢ = min{z [| Aa ", 7 IHacl = Aa ) (32)
fori=1,2. Then the set
Su = {z[V(z) < ¢} (33)

is a compact subset of o1 X Tep — {z|A1 =00r Ay =
0}. Proof: The first observation is that the set

S1={lq,p)lVigLp) S.c" <}  (34)

is a subset of Ly Le. 51N Ee1 = 81

In fact, ¢; is the supremum of V;{g1,71) on theset £ —
{{q1.p1)iA1 = 0}. To see this, we solve a constrained
maximization problem as below:

1
sup(Z (I~ tar " + | A = Aa )} (38)
2

under the constraints

First, we need to calculate the supremum of the uncon-
strained maximization problem. Tt is easy to see that
this value is oo. Then, we need to calculate the min-
imum value subject to [; = 0. The result is 3 ||l4 112
achieved when A = A;. Similarly, the minimum value
subject to A; = 01is 1 || Ag iI%. We should also calculate
the minimum value subject to || A|| = g. By applying
the Lagrange multiplier method we found this valze to
be 4~ || Ag[>. Thus

L1 1 1
or = min{g | 4a II* 5 17, (0= A )%} (37)

is the supremum of V) on the set L4 — {(q1, ;)| 41 =
0}. We provecl that $; C Le1 — {(q1,p])|A1 = 0}.
Another observation is that #{5;) is a compact subset

of Dy. Thus by corollary 3.2, 5] is a compact subset
of 231.

We can make the same arguments for the case when
i = 2 to prove that Sy is a compact subset of L.p —
{{g2,p2)|A2 = 0}

Hence by letting ¢ < min{cy, ca}, it is true that

SaC 8 x8 CEe X Eep — {;1/‘11 =0or A; = U}
(38)
Thus, Sar is a compact subset of Lgp x Do — {2]4; =
Oor A3 =0} m

We can now apply LaSalle’s invariance principle to
show that the trajectory of the closed loop system,
starting within Sas, converges to the maximal invariant
subset of Syr where u(t) = 0 is satisfied for all t.

Proposition 5.2 With V.c and w; given as in {24)
J(31) and (29), the irajectery starting from point
(#30- P10- @20, P20) which satisfies

V{q10: P10, 920: P20) < ¢ (39)

will converge to the set where

L = lu
Ap = Ag
(Mi—Ms) = ¢ (4

are satisfied fori=1,2.
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Proof: In order to calculate the invariant set,let u; =
0. When sin{E;) # 0, we get

L Ty =Ty F0
(h~ln+ Clsm(ﬁ"i)lz)qu
T, -7 . =
+ll X(A]_ - Adl + plsm(lfﬂ:‘p)fh)
T -7 -
+({A1 — An + plsm(—l—i—z—ﬂ)Al)xpl)qu
=0 {41)
Take inner products on both sides with g;(¢) to get
Ty ~ToF o, ~
(i x (A —Aq +(1sm(1—22—£—‘-)x41))'m =0 (12)
This is equivalent to
T -7 -~
(1 % () - (A1 — Ay + Gusin( 222 E 8 ) — o
(43)
Let
T,-7T -~
B=A —-An+ 4151371(—"1“"'“&)141 (44)

2

Equation (43) means B is perpendicular to the vector
{; x g1{t). We can see that vector D should stay in the
plane spanned by {; and q;(¢).

4 -4y

LA0)

4

Qrbital Plane )

il {t

Figure 1: The relationship between !,g1, A1 — A4 and B

However, from the assumption that u,(f) =0, we know
that A; and !; are constant vectors. The time varying
vector B will sweep a line segment passing the fixed
point (4; — Ag1). The direction of this line segment is
aligned with A 1. S0 vector B will be the intersection
of the {/1,¢1) plane and this line segment. DBecause
1{t) is sweeping the orbital plane, the (I1,¢:) plane is
identical at t and t+&T; where k is an integer and T is
the period of the first satellite. Since the line segment
is not changed, the intersection points in these cases

must be identical. Thus we must have
B(t) = B(t + kT) (45)

Without lost of generality, suppose at Llime ¢,
E1{(1), Ex(t) € (—€, 7 + €). Then equation (45) requires
that .

) €1 (El (t))s;n(ML;}M)

4099

= G(Ei(t + kT })sin( DD Ta(t=kN) ¢y (46)

Let & = 1 in equation {46), because (E\{t))
C1(E1{t+T1)), the first observation we make is that the
two satellites must have the same period. In fact, sup-
pose at time #3 equation (46) is satisfied. Then at time
to+T1, since El(t(]) = El(to+T1),T1(t0) = T](t0+T1)
and all the angles(anomalies) are in the range of [0, 27),
we must have Yo(tg) = Ta(tg + T1). But

3
Tato) = Yofto +Th) = =1/ 2 (Malto + T1) = Ma(to))
d

(47)
Then Ta(te) = Yalte + T1) will be satisfied only if
Mo(teo + 1) = Ma(tp). Thus we shall have Ty = k1T
where k) is a positive integer. Remember we can apply
the same argument to the second satellite to get T =
k171, Thus we must have 77 = T,. Hence on the
invariant set, we proved that a; = as.

On the other hand, for a specific time ¢, we know that
there exists t* € [0,7) such that

T+ filt) = [t +17) (48)

where fy is the true anomaly of the first satellite. The
value of t* depends on #. The plane spanned by ({;,¢:)
at time ¢ will also be identical to the plane spanned by
(!1,q1) at time ¢ + t*. Thus we must have

B(t) = B(t+¢t") (49)
which requires that
G (Er(t))sin(T{0—sl0=2)
=GBt +t*))sin(DlH0=Taltet)40)  (50)

Further. a; = ay implies that Afy (¢) — Mo{t) = M (t +
t*) — My(t + t*), one can verify that

sin( TaO=To0)-0y _
_Sin(Tl(t+t')f'§2(t+t')+¢) (51)
Tor (50) to be satisfied, one possibility is that
Sin(Tl (f) _ T?(t) _ Qb) =0 (52)

2
Another possibility is that

GUE) = ~G(Erlt + 1) (53)

By the definition of (1. one can verify that (53) can only
be satisfied when ¢ takes value from a set of measure 0.
Thus, for (50) to be satisfied, (52) must be true.

Because of (52}, the time varying parts in equation
(41} vanish. We can make the same argument as in the
proof of the single satellite case [i] to show that

h

I



A = Ag (54)

We can apply similar arguments for the second satellite.
Thus we have
L = g

4; Agi
(T —Y2) = ¢ (55)

for ¢ = 1,2. By the definition of ¥; and T: in
equation{18), we have

3 3
L AN b T
‘/ang ,/agM2 & (56)

But we already know a; = az = ag4, so we conclude
that
(My—My)=2¢ (57)

6 Simulation results

Figure 2: The desired final relative motion of two sate)-
lites (length unit= one tenth of earth radius}

To verify our algorithm, a series of simulations have
been carricd out. Herc we will show a controlled
transfer of two satellites from orbit [a,e,¢,w,$ =
[20,0.1,7/4, 7 /2,0] with inilial separation of mean
anomaly being x/90 to the orbit [a,e,¢,w, Q] =
[25,0.05, 7/3,7/2,0] with final separation of mean
anomaly being %/18. Only relative motion between
the satellites are plotted. Figure 2 displays the desired
relative motion between the satellites. Figure 3 dis-
plays the relative motion between the satellites using
the control algorithm proposed. As we can see, the
desired orbit and separation are achieved.

7 Summary and future directions

In this paper we have proposed a control algorithm that
can be used to set up periodic satellite formations on

Figure 3: The relative motion achieved by our algorithm

elliptic orbits. The shape space formed by the angu-
lar mementum vectors and Laplace vectors is appropri-
ate to describe satellite formations. The control laws
we propose are based on a Lyapunov function on this
shape space and proved to be convergent. We have not
considered the effect of perturbations such as J2 effect.
This is currently being investigated.
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