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Abstract

We introduce a dynamic battery model that describes
the variations of the capacity of a battery under time
varying discharge current. This model supports a co-design
approach for cyber-physical systems where control laws,
online scheduling algorithms and battery management can
be designed jointly to balance performance of the plant,
the computing device, and the batteries. The input-output
relationship of our model is equivalent to the Rakhmatov-
Vrudhula-Wallach (RVW) model that has been verified by
high fidelity simulations and experiments. The major im-
provement of our model is that it allows online prediction
of battery life. This improvement is significant since for
cyber-physical systems, control laws and online scheduling
algorithms draw current from batteries according to the
state of the plant and the processor, which cannot be
determined at the design stage. Using our model, the optimal
discharge profile for a square wave current are determined
and simulation results are provided to compare battery life
for different discharge profiles.

1. Introduction

A key idea for Cyber-physical systems research is to co-
design different controlling mechanisms to balance perfor-
mance in both physical systems and computing systems [17],
[14], [13], [9], [1]. An important class of applications are
mobile sensor networks where each sensor node is also a
mobile robot that is able to reconfigure the structure of the
network [4], [16], [15]. Due to the requirement for mobility,
most mobile sensor networks are powered by batteries. Until
now, the majority of batteries used are electro-chemical
batteries. It has been understood that such batteries are com-
plex chemical/physical systems by themselves and possess
interesting “nonlinear” discharge behaviors. However, clas-
sical approaches in cyber-physical co-design tend to ignore
these battery bahaviors. For example, in classical optimal
control, controller design is often based on minimizing a
cost function that includes the averaged power of control
effort, and the battery is idealized as a constant voltage

source providing the desired power. For a real battery, such
minimized averaged power does not translate to increased
battery life directly.

According to battery and VLSI design literature e.g. [3],
[12], the discharge current is supported by the change of
concentration of electrolytes near the anode or the cathode of
a battery. The chemical processes of oxidation and reduction
reduce the concentration of electrolytes near the electrodes
and create a spatial gradient of concentration within the
battery. Driven by the concentration gradient, electrolytes
diffuse to the electrodes from other areas of the battery.
When the concentration at the electrodes drops below a
certain threshold, a battery fails to support discharge current,
causing failure to devices it supports. At this moment, the
discharge cycle has to stop and the battery needs to be
recharged or replaced. Note that there may be a significant
amount of active electrolytes left in the battery when a
discharge cycle ends. Therefore, the actual capacity of a
battery is significantly lower than the theoretical capacity
that is the total amount of electrolytes contained in a battery.
When the battery is discharged under a pulsed discharge
current, during the idle time when current is interrupted,
the diffusion process increases electrolyte concentration at
the electrodes. This produces the recovery effect that makes
the battery appears to have regained portions of its capacity.
The amount of capacity recovered depends on the amount
of active electrolyte available. With properly chosen idle
time, the recovery effect significantly improves battery per-
formance in two aspects. First, the battery is able to deliver
current impulses that several times larger than a constant
current. This is because the diffusion process allows charges
to redistribute after a quick discharge is drawn. Second, if the
averaged currents are identical, impulsive current increases
the total charge delivered i.e. the actual capacity and lifetime
of the battery is increased.

Battery modeling aims to simulate these behaviors by
computational models [12]. Existing models are typically
categorized as physical, empirical and abstract models.
Physical models are based on the complex electrochemical
process within a battery [5], hence requiring long time to
compute. Empirical models uses very simple equations to
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describe specific battery behavior [8], hence suffering over-
simplification. Some abstract models uses simulated circuit
components to emulate the battery behavior [2], hence being
tightly connected with specific circuit simulation softwares.
Analytical models are abstract models that are derived by
simplifying physical models using mathematical analytic
methods. Authors of [3] model battery behaviors as a
stochastic system based on random walks on a finite state
machine. Authors of [10] model the nonlinear relationship
between battery capacity and averaged discharge current.

The Rakhmatov-Vrudhula-Wallach (RVW) model pro-
posed in [11] is an abstract model that is derived from
solving the diffusion equations governing the electrolytes
motion within a battery. The model captures the recovery
effect effectively. It has been shown to agree with experi-
mental results and has demonstrated high accuracy in battery
capacity prediction and battery life estimation. However, the
application of the RVW model requires that the discharge
current, as a function of time, is known. This is because
the RVW model is typically used at the circuit design
stage to evaluate design options on battery discharge. For
cyber-physical systems co-design, the approach taken in
[6], [7] also assumes known battery discharge profiles for
computing tasks. We argue that a dynamic model needs to
be established that is able to predict battery capacity based
on the discharge current determined by a feedback control
law or feedback scheduling algorithm. The magnitude and
pulse width of such discharge current can not be determined
beforehand.

In this paper, we establish a battery model that captures
the recovery effect and supports the co-design of battery
management with controller and scheduling algorithms. The
model is for the discharge dynamics within one discharge
cycle of (possibly rechargeable) batteries. The discharge
cycle starts when a battery is fully charged and ends when
the battery can not support the demand for discharge current;
no recharging is allowed during the cycle. We review the
electrochemical battery discharge mechanisms and the RVW
model in section 2. In section 3, we derive the dynamic
battery model. The optimal impulsive square wave discharge
profile is computed in section 4. In section 5, we compare
battery life for different battery discharge profiles via sim-
ulation. Conclusions and future directions are discussed in
section 6.

2. Battery Mechanism and the RVW model

This section reviews the relevant properties of electro-
chemical battery cells and the RVW model. The behaviors
of practical batteries are far from an ideal energy source.
We summarizes the discussions in [3], [12], [11] and the
references therein.

2.1. The Electrochemical Process

An electrochemical battery has a cathode and an anode
that are connected by electrolyte inside the battery shell.
During discharge, the gain of electrons at the cathode
(oxidation) is coupled with the loss of electrons at the
anode (reduction). The electrochemical reactions, involving
electrons v−,oxidized species O, and reduced species R, can
be described as follows:

cathode:O + v− → R

anode:R− v− → O.

To simplify the discussion, let us suppose that a battery is
symmetric and the two electrodes behave in similar ways.
This allows us to consider only species O and the cathode.

Initially, the concentration of species O is uniformly
distributed inside a battery. During the discharge period, the
species O at the cathode accepts electrons from external
circuit and forms species R. This causes reduction of O near
the cathode, which generates a concentration gradient of O
across the battery. Due to this gradient, the species O that
is further away from the cathode diffuses to the cathode.
The diffusion tends to increase the concentration of O at
the cathode. Under constant discharge current, eventually,
the diffusion and the consumption reach a balance at the
cathode, and the overall concentration of O at the cathode
keeps dropping. Once the concentration falls below a certain
level, the battery fails to support the outside circuit.

If load is switched off before the battery fails, the cathode
fails to draw electrons from the external circuit and thus the
transformation at the cathode (from species O to species
R) stops. However, the concentration gradient inside the
battery still exists and the diffusion will continue until
the concentration gradient disappears. Now species O will
become uniformly distributed at a level lower than the initial
concentration. The concentration of species O with respect
to position is illustrated in Fig. 1.

Figure 1. Concentration of species O near the cathode.
Left, before discharge; middle, during discharge; right,
after discharge.

Batteries behave differently under the impulsive discharge
current than under a constant discharge current. When using
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an impulsive discharge current, more species can diffuse to
the electrodes when the discharge current drops to zero.
Hence, given the same averaged current, the amount of
charge delivered under the impulsive current is bigger than
that under the constant current.

We define the time period between the initial discharge
and the failure of battery as the battery life. Note that the
battery life is different from the nominal battery life, which
measures battery life under a nominal constant current, and
the theoretical battery life, which is equivalent to the total
charge contained in the battery.

2.2. The RVW Model

Rakhmatov, Vrudhula, and Wallach studied a one-
dimensional diffusion equation that describes the concen-
tration of electrolytes inside a battery:

J(x, t) = −D∂C(x, t)
∂x

∂C (x, t)
∂t

= D
∂2C (x, t)
∂x2

(1)

where C(x, t) stands for the concentration of electrolyte
at time t at the distance x from the electrode, J(x, t)
denotes the flux of electrolyte and D is the constant diffusion
coefficient. Suppose the length of the battery is 2w. Then
the boundary condition for (1) can be derived as,

1) x = 0: according to Faraday’s law, the flux of
electrolyte J(0, t) at the electrode is proportional to
the current i(t) supplied by the battery.

−J(0, t)νAF = i(t)

where F stands for the Faraday Constant, A stands for
the cross section of the electrode, and ν is a scaling
factor. One can derive the first boundary condition as

D
∂C (x, t)
∂x

|x=0 =
i (t)
νFA

. (2)

2) x = w: the concentration gradient at the center of
the battery is zero. Thus, one can derive the second
boundary condition as

D
∂C (x, t)
∂x

|x=w = 0. (3)

To solve (1), the Laplace transform method is applied.
Since the electrolyte is uniformly distributed when discharge
started, C (x, 0) is a constant and can be denoted by C?. The
solution for the concentration of electrolyte at the electrode
is

C (0, t) = C? − i (t)
νwFA

∗

(
1 + 2

∞∑
m=1

e−
π2m2

w2 Dt

)
(4)

where ? stands for the convolution. Define ρ(t) as

ρ(t) =1− C(0, t)
C?

=
i(t)

C?νwFA
∗

(
1 + 2

∞∑
m=1

e−
π2m2

w2 Dt

) (5)

At the starting time t = 0, C(0, 0) = C? and ρ(0) = 0. As
the discharge continues, C(0, t) gradually decreases and ρ(t)
increases. Finally at the dead time t = L, C(0, L) drops to
the cutoff level Ccutoff while ρ(t) reaches the corresponding
threshold ρ? =

(
1− Ccutoff

C?

)
. Note that both ρ? and Ccutoff

are constants associate with a given battery.

3. A Dynamic Discharge Model

The RVW model relates the concentration at the electrode
with the discharge current i(t). But the relationship is static
in the sense that the current i(t) must be known for the
entire discharge cycle. We present a state space dynamic
model that produces the same input-output relationship as
the RVW model. This state space model is linear and time
invariant, hence easier to use than the RVW model.

Let λm = π2D
w2 m

2 and α = C?νwFAρ?. To normalize
ρ(t), we define y(t) as

y(t) =
ρ(t)
ρ?

=
i(t)
α
∗

(
1 + 2

∞∑
m=1

e−λmt

)
(6)

which implies that y(0) = 0 at the starting time t = 0 and
y(L) = 1 at the dead time t = L.

To derive the state space model, we first replace m =∞
with m = M in (6) and obtain

y (t) =
i (t)
α
∗ 1 +

i (t)
α
∗ 2

M∑
m=1

e−λmt

=
[
1 1 · · · 1

]


i(t)
α ∗ 1

2i(t)
α ∗ e−λ1t

...
2i(t)
α ∗ e−λMt


(7)

Next, we define the state variables to be x =
[x0(t), ..., xM(t)]T . The elements of x satisfy, ẋ0 (t) = 1

α i(t)
ẋm (t) = −λmxm(t) + 2

α i(t) m ∈ {1, 2, · · · ,M}
xm(0) = 0 m ∈ {0, 1, · · · ,M}

The solutions of the above equations are,

x0(t) =
∫ t

0

1
α
i(τ)dτ =

i(t)
α
∗ 1

xm(t) =
∫ t

0

e−λm(t−τ) 2
α
i(τ)dτ

=
2i(t)
α
∗ e−λmt

(8)
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We substitute (8) into (7) to get,

y(t) = [1, 1, ..., 1]


x0(t)
x1(t)
· · ·

xM(t)

 = [1, 1, ..., 1]x(t) (9)

To this point, we have established the dynamic battery
discharge model as

ẋ(t) = Ax(t) + bi(t)
y(t) = cx(t) (10)

where

A =


0
−λ1

· · ·
−λM


(M+1)×(M+1)

b =


1
α
2
α
· · ·
2
α


(M+1)×1

c = [1, 1, · · · , 1]1×(M+1) .

In addition, we have shown that this model is input-output
equivalent to the RVW model when M →∞.

According to (10), we know that y(t) is the sum of all
internal states xi(t). We now discuss the role played by the
internal states. To simplify the analysis, we begin with only
two internal states and a simplified dynamic model as

[
ẋ0(t)
ẋ1(t)

]
=
[

0 0
0 −λ1

] [
x0(t)
x1(t)

]
+
[

1
α
2
α

]
i(t)

y(t) = x0(t) + x1(t)
(11)

Suppose a constant discharge current is drawn. We select
the physical parameters of a battery to be

I = 222.7mA α = 40375 λm = (0.2)2m2.

The system output y(t), internal states x0(t) and x1(t) are
plotted in Fig. 2. It shows that the x0(t) is a straight line. The
x1(t) is transient from t = 0 to t = S and then approaches
the constant steady state from t = S to t = L. The constant
x1(t)steady represents the wasted electrolytes that can not be
drawn by the current. Thus to maximize battery efficiency,
we need to minimize x1(t)steady.

4. Impulsive Discharge Current

The co-design for cyber-physical systems should take
advantage of the recovery effect to improve the battery
efficiency. To achieve this goal, we are interested in studying
different discharge profiles. In this paper, we focus on the
periodic impulsive current i(t) shown in Fig. 3.

The periodic square wave can be expressed as{
i(t) = u t1 ≤ t ≤ t1 +Q
i(t) = 0 t1 +Q ≤ t ≤ t1 + T

Figure 2. Internal States

Figure 3. Impulse Current

where u is a constant. From Fig. 3, it can be seen that the
shape of i(t) depends on two parameters: the duty ratio R =
Q
T and the length of the period T .

We now derive the optimal square wave discharge profile
under a fixed average current iav, i.e.

u · Q
T

= iav. (12)

We first determine the optimal duty R in the transient given
that T is fixed. Then we determine the optimal period T
when the system is near steady state given the optimal duty
R.

To measure the increase of the state x1 in transient, we
define f to be the difference between x1(t0 +T ) and x1(t0)
as a function of R

f(R) = x1(t0 + T )− x1(t0)

= e−λ1Tx(t0)− x1(t0)

+
2
α

iav

R

1
λ1

(
e−λ1(T−RT ) − e−λ1T

)
.

(13)

We want to show that f(R) is monotonic increasing with
respect to R > 0. Hence the optimal duty cycle is the
minimum value for R.

To justify this conclusion, we compute the derivative of
f(R) with respect to R as

df

dR
=

2
α

(
− iav

R2

)
1
λ1

(
e−λ1(T−RT ) − e−λ1T

)
+

2
α

iav

R
Te−λ1(T−RT )

=
2
α

iav

R2
e−λ1T (− 1

λ1

(
eλ1RT − 1) +RTeλ1RT

)
.

(14)
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Define H(R) to be

H(R) =
(
− 1
λ1

(eλ1RT − 1) +RTeλ1RT

)
. (15)

Then, {
H(0) = 0
dH

dR
= RT 2λ1e

λ1RT
(16)

that implies dH
dR > 0 for all R > 0, i.e. H(R) is monotone

increasing. Since H(0) = 0, we can conclude that H(R) >
0 if R > 0. Moreover, plug (15) back into (14),

df

dR
=

2
α

iav

R2
e−λ1TH(R)

we must have that
df

dR
> 0 if R > 0,

which means that the function f is monotone increasing
whenever R > 0. Therefore, the shorter the duty ratio, the
better battery efficiency is.

Suppose RL is the minimum allowed duty. Next, we
determine the optimal T given R = RL fixed for the steady
state. From Fig. 2, we can see that the steady state value of
x1(t), denoted by x1(t)steady, stands for the total unavailable
capacity that needs to be minimized. The conclusion is that
x1(t)steady is monotone decreasing with respect to T . Hence
the longer the discharge period is, the more efficient the
battery is.

The justification to the conclusion is as follows. Accord-
ing to the property of the steady state, we have

x1(t0)steady = x1(t0 + T )steady.

Moreover,

x1(t0 + T )steady

= e−λ1Tx1(t0)steady +
2iavT

λ1αQ

(
e−λ1(T−Q) − e−λ1T

)
Therefore,

x1(t0)steady =
2iavT

λ1αQ

e−λ1(T−Q) − e−λ1T

1− e−λ1T
(17)

Since the ratio of a duty cycle has been fixed as RL, we
have,

Q = RLT (18)

Substitute (18) into (17), we have,

x1(t0)steady =
2iav

λ1αRL

eλ1RLT − 1
eλ1T − 1

(19)

The state x1(t0)steady can now be viewed as a function of
T . Using similar methods as the discussion for the optimal
duty ratio R. We can show that dx1(t0)steady

dT < 0. Therefore
x1(t0)steady is monotone decreasing. The longer the period
T , the smaller x1(t0)steady is, and the better the battery
efficiency is.

5. Simulation Results

We now compare simulation results for a battery with the
following parameters:

I = 222.7mA α = 40375 λm = (0.2)2m2

under different discharge profiles.
First, the influence of duty ratio is shown in Fig. 4. The

time period is fixed to be T = L/300 where L is the
battery life. We can see that the smaller the duty ratio R, the
smaller y(t) is, i.e. the more efficient the battery is, which
is consistent with our analysis.

Figure 4. Battery capacity under different duty ratios

The influence of the time period T is shown in Fig. 5. The
duty ratio is fixed to be R = 0.5. The right picture indicates
that the larger the time period T , the smaller x1(t) is, i.e.
the less unavailable species in the battery. The left picture
shows that the larger the time period T , the smaller y(t) is,
i.e. the more efficient the battery is. This is consistent with
our analysis.

Figure 5. Battery capacity under different discharge
periods.

It can also be observed that as the discharge current
becomes more impulsive i.e. the ratio becomes smaller or the
period becomes larger, although the unused capacity at the
beginning of each discharge period decreases, the maximal
unused capacity during the discharge period increases. This
will cause problems when the battery is close to failure since
the high unused capacity fails the battery before the recovery
effect takes place. Therefore, if the discharge current is
adjustable, an optimal discharge strategy should be more
impulsive at the beginning of the discharge and gradually
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become less impulsive till the end. This agrees with the
existing simulation and experimental results in the literature
reviewed.

6. Conclusions

We introduce a dynamic battery discharge model that
is input-output equivalent to the RVW model. Since the
accuracy of RVW model has been verified by experimental
data, it is reasonable to conclude that the dynamic battery
discharge model inherits such accuracy. The states of this
model represent the instantaneous discharge/recovery effects
within the battery. Using this dynamic model, the battery
can be viewed as a dynamic system under the control i(t).
Optimal i(t) can be determined analytically without seeking
numerical methods.

The dynamic battery model opens doors to many research
questions for cyber-physical systems. Based on the simple
case for square wave discharge current, a natural extension
is to design pulse width modulation (PWM) schemes to
generate discharge current profile when iav is a function
of time that depends on feedback control and feedback
scheduling. Note that although we assume that i(t) = 0
after the impulse in this paper, the results still hold when a
background discharge current is imposed. The background
discharge current usually exists in real systems, for example,
to keep the battery management circuits alive. Of course,
a design question will be whether the extra cost in the
background discharge supersedes the gain for implementing
battery management algorithms. Suppose the savings are
significant, then power electronic circuits will make such
PWM schemes implementable.
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